
Emborg Documentation
Release 1.38.2

Ken Kundert

Feb 14, 2024





CONTENTS

1 What is Emborg? 3

2 Why Emborg? 5

3 Why Borg? 7

4 Terminology 9

5 Quick Tour 11

6 Status 15

7 Borg 17

8 Precautions 19

9 Issues 21

10 Contents 23

i



ii



Emborg Documentation, Release 1.38.2

Version: 1.38.2
Released: 2024-01-01
Please report all bugs and suggestions on GitHub.

CONTENTS 1

https://github.com/KenKundert/emborg/issues


Emborg Documentation, Release 1.38.2

2 CONTENTS



CHAPTER

ONE

WHAT IS EMBORG?

Emborg is a simple command line utility to orchestrate backups. It is built as a front-end to Borg, a powerful and fast
de-duplicating backup program. With Emborg, you specify all the details about your backups once in advance, and
then use a very simple command line interface for your day-to-day activities.

Use of Emborg does not preclude the use of Borg directly on the same repository. The philosophy of Emborg is to
provide commands that you would use often and in an interactive manner with the expectation that you would use Borg
directly for more unusual or esoteric situations.

3

https://borgbackup.readthedocs.io


Emborg Documentation, Release 1.38.2

4 Chapter 1. What is Emborg?



CHAPTER

TWO

WHY EMBORG?

There are alternatives to Emborg such as BorgMatic and Vorta, both of which are also front-ends to BorgBackup.
BorgMatic has a command line interface like Emborg while Vorta is GUI-based. Emborg distinguishes itself by pro-
viding a command line interface that is very efficient for common tasks, such as creating archives (backups), restoring
files or directories, or comparing existing files to those in an archive. Also, Emborg naturally supports multiple des-
tination repositories. This feature can be used to simultaneously backup to a local repository, which provides rapid
restores, and an off-site repository, which provides increased safety in case of a local disaster.

5

https://torsion.org/borgmatic
https://github.com/borgbase/vorta


Emborg Documentation, Release 1.38.2

6 Chapter 2. Why Emborg?



CHAPTER

THREE

WHY BORG?

Well, everyone needs to backup their files. So perhaps the questions should be: why not Duplicity? Duplicity has been
the standard way to do backups on Unix systems for many years.

Duplicity provides full and incremental backups. A full backup makes complete copies of each file. With an incremental
backup, only the difference between the current and previous versions of the file are saved. Thus, to retrieve a file from
the backup, Duplicity must first get the original version of the file, and then apply each change. That approach results
in the following issues:

1. The recovery process is slow because the desired file is reconstructed from possibly a large number of change
sets, each of which must be downloaded from a remote repository before it can be applied. The change sets are
large, so the recovery of even small files can require downloading a large amount of data. It is common that the
recovery of a single small file could require many hours.

2. Because the recovery process requires so many steps, it can be fragile. Apparently it keeps all the change sets
open during the recovery process, and so the recovery process can fail because the operating system limits how
many files you can open at any one time.

3. Generally, when there are problems, you only find them when you try to recover a file. At that point it is too late.

4. Duplicity does not do de-duplication, so if your were to have multiple copies of the same file, or if you moved a
file, then you would keep multiple copies of it.

The first two issues can be reduced with frequent full backups, but this greatly increases the space you need to hold
your backups.

Borg works in a very different way. When Borg encounters a file, it first determines whether it is new or not. The file
is determined to be new if the contents of that file do not already exist in the repository, in which case it copies the
contents into the repository. Then, either way, it associates a pointer to the file’s contents with the filepath. This makes
it naturally de-duplicating. When it comes time to recover a file, it simply uses the file path to find the contents. In this
way, it only retrieves the data it needs. There is no complicated and fragile process needed to reconstruct the file from
a long string of differences.

After living with Duplicity for many years, I now find the Borg recovery process stunningly fast and extremely reliable.
I am completely sold on Borg and will never use Duplicity again.

7

http://duplicity.nongnu.org


Emborg Documentation, Release 1.38.2

8 Chapter 3. Why Borg?



CHAPTER

FOUR

TERMINOLOGY

It is helpful to understand two terms that are used used by Borg to describe your backups.

repository
This is the location where all of your files are backed up to. It may be on a local file system or it may
be remote, in which case it is accessed using ssh.

A repository consists of a collection of disembodied and deduplicated file contents along with a
collection of archives.

archive
This is a snapshot of the files that existed when a particular backup was run. Basically, it is a collection
of file paths along with pointers to the contents of those files.

9



Emborg Documentation, Release 1.38.2

10 Chapter 4. Terminology



CHAPTER

FIVE

QUICK TOUR

You must initially describe your repository or repositories to Emborg. You do so by adding configuration files to ~/.con-
fig/emborg. At least two are required. First is the file that contains settings that are shared between all configurations.
This is a Python file located at ~/.config/emborg/settings. Here is an example:

# configurations
configurations = ['root']
default_configurations = 'root'

# things to exclude
exclude_caches = True
exclude_if_present = '.nobackup'
exclude_nodump = True

There also must be individual settings files for each backup configuration. They are also a Python files. The above file
defines the root configuration. The configuration is described in ~/.config/emborg/root, an example of which is
given below. It is designed to back up the whole machine:

# destination repository
repository = 'borgbase:backups'
prefix = '{host_name}-{config_name}-'

# directories to back up
src_dirs = ['/']

# directories to exclude
excludes = [

"/dev",
"/proc",
"/run",
"/sys",
"/tmp",
"/var/cache",
"/var/tmp",

]

Since this configuration needs to back up files that may not be accessible by normal users, it should be run by the root
user.

Once you have created these files, you can use Emborg to perform common tasks that involve your backups.

The first step would be to initialize the remote repository. A repository must be initialized before it can first used. To
do so, one uses the init command:

11



Emborg Documentation, Release 1.38.2

$ emborg init

Once the repository is initialized, it is ready for use. The create command creates an archive, meaning that it backs up
your current files.

$ emborg create

Once one or more archives have been created, you can list the available archives using the list command.

$ emborg list

The manifest or files command displays all the files in the most recent archive.

$ emborg manifest
$ emborg files

You can restrict the listing to those files contained in the current working directory using:

$ emborg manifest .

If you give the name of an archive, it displays all the files in the specified archive.

$ emborg manifest -a continuum-2019-04-23T18:35:33

Or, you can give a date, in which case the oldest archive created before that date is used.

$ emborg manifest -d 2019-04-23

You can also specify the date and time relative to the current moment:

$ emborg manifest -d 1w

The compare command allows you to see and manage the differences between your local files and those in an archive.
You can compare individual files or entire directories. You can use the date and archive options to select the particular
archive to compare against. You can use the interactive version of the command to graphically view changes and merge
them back into you local files.

$ emborg compare -i doc/thesis

The restore command restores files or directories in place, meaning it replaces the current version with the one from
the archive. You can also use the date and archive options to select the particular archive to draw from.

$ cd ~/bin
$ emborg restore accounts.json

The mount command creates a directory ‘BACKUPS’ and then mounts an archive or the whole repository on this
directory. This allows you to move into the archive or repository, navigating, examining, and retrieving files as if it
were a file system. Again, you can use the date and archive options to select the particular archive to mount.

$ emborg mount BACKUPS

The umount command un-mounts the archive or repository after you are done with it.

$ emborg umount BACKUPS

The due command tells you when the last successful backup was performed.

12 Chapter 5. Quick Tour



Emborg Documentation, Release 1.38.2

$ emborg due

The info command shows you information about your repository such as where it is located and how large it is.

$ emborg info

The help command shows you information on how to use Emborg.

$ emborg help

There are more commands, but the above are the most commonly used.

13



Emborg Documentation, Release 1.38.2

14 Chapter 5. Quick Tour



CHAPTER

SIX

STATUS

Emborg includes a utility, emborg_overdue, that can be run in a cron script on either the client or the server machine
that notifies you if your back-ups have not completed successfully in a specified period of time. In addition, Emborg
can be configured to update monitoring services such as HealthChecks.io with the status of the backups.

15

https://healthchecks.io


Emborg Documentation, Release 1.38.2

16 Chapter 6. Status



CHAPTER

SEVEN

BORG

Borg has more power than what is exposed with Emborg. You may use it directly or through the Emborg borg command
when you need that power. More information can be found at Borg.

17

https://borgbackup.readthedocs.io


Emborg Documentation, Release 1.38.2

18 Chapter 7. Borg



CHAPTER

EIGHT

PRECAUTIONS

You should assure you have a backup copy of the encryption key and its passphrase in a safe place (run ‘borg key export’
to extract the encryption keys). This is very important. If the only copy of the encryption credentials are on the disk
being backed up and if that disk were to fail you would not be able to access your backups. I recommend the use of
SpareKeys as a way of assuring that you always have access to the essential information, such as your Borg passphrase
and keys, that you would need to get started after a catastrophic loss of your disk.

If you keep the passphrase in an Emborg configuration file then you should set the permissions for that file so that it is
not readable by others:

chmod 600 ~/.config/emborg/*

Better is to simply not store the passphrase in Emborg configuration files. You can use the passcommand setting for
this, or you can use Avendesora, which is a flexible password management system. The interface to Avendesora is
already built in to Emborg, but its use is optional (it need not be installed).

It is also best, if it can be arranged, to keep your backups at a remote site so that your backups do not get destroyed in
the same disaster, such as a fire or flood, that claims your original files. One option is RSync. Another is BorgBase. I
have experience with both, and both seem quite good. One I have not tried is Hetzner.

Finally, it is a good idea to practice a recovery. Pretend that you have lost all your files and then see if you can do a
restore from backup. Doing this and working out the kinks before you lose your files can save you if you ever do lose
your files.

19

https://github.com/kalekundert/sparekeys
https://avendesora.readthedocs.io
https://www.rsync.net/products/attic.html
https://www.borgbase.com
https://www.hetzner.com/storage/storage-box


Emborg Documentation, Release 1.38.2

20 Chapter 8. Precautions



CHAPTER

NINE

ISSUES

Please ask questions or report problems on GitHub.

21

https://github.com/KenKundert/emborg/issues


Emborg Documentation, Release 1.38.2

22 Chapter 9. Issues



CHAPTER

TEN

CONTENTS

10.1 Getting Started

10.1.1 Installing

Many Linux distributions include Borg in their package managers. In Fedora it is referred to as borgbackup. In this
case you would install borg by running the following:

$ sudo dnf install borgbackup

Alternately, you can download a precompiled version from Borg Github Releases, which allows you to install Borg as
an unprivileged user. You can do so with following commands (they may need to be adjusted to get the latest version):

$ cd ~/bin
$ wget https://github.com/borgbackup/borg/releases/download/1.2.6/borg-linux64
$ wget https://github.com/borgbackup/borg/releases/download/1.2.6/borg-linux64.asc
$ gpg --recv-keys 6D5BEF9ADD2075805747B70F9F88FB52FAF7B393
$ gpg --verify borg-linux64.asc
$ rm borg-linux64.asc
$ chmod 755 borg-linux64

Finally, you can install it using pip:

$ pip install --user borgbackup

Download and install Emborg as follows (requires Python3.6 or better):

$ pip install --user emborg

Or, if you want the development version, use:

$ git clone https://github.com/KenKundert/emborg.git
$ pip install --user ./emborg

You may also need to install and configure either a notification daemon or a mail daemon. This allows errors to be
reported when you are not running Emborg in a terminal. More information can be found by reading about the notifier
and notify Emborg settings.

23

https://github.com/borgbackup/borg/releases/
https://pip.pypa.io/en/stable/installing


Emborg Documentation, Release 1.38.2

10.1.2 Configuring Emborg to Backup A Home Directory

The basic idea behind Emborg is that you place all information relevant to your backups in two configuration files,
which allows you to use Emborg to perform tasks without re-specifying that information. Emborg allows you to have
any number of setups, which you might want if you wanted to backup to multiple repositories for redundancy or if you
want to use different rules for different sets of files. Regardless, you use a separate configuration for each set up, plus
there is a common configuration file shared by all setups. You are free to place most settings in either file, which ever is
most convenient. All the configuration files are placed in ~/.config/emborg. If you run Emborg without creating your
configuration files, Emborg will create some starter files for you. A configuration is specified using Python, thus the
content of these files is formatted as Python code and is read by a Python interpreter.

As a demonstration on how to configure Emborg, imagine wanting to back up your home directory in two ways. First,
you want to backup the files to an off-site server. Here the expectation is that you would backup once a day on average
and you would do so interactively so that you can choose an appropriate time. Second, you have some free space on your
machine that you would like to dedicate to recent snapshots of your files. The idea is that you find that you occasionally
overwrite or delete files that you just spent time creating, and you want to run local backups every 10-15 minutes so
that you can easily recover these files. To accomplish these two things, you need three configuration files.

Shared Settings

The first file is the shared configuration file:

configurations = 'backups snapshots'
default_configuration = 'backups'

This is basically the minimum you can give. Your two configurations are listed in configurations. It could be a list of
strings, but you can also give a single string, in which case the string is split on white space. Then you specify your
default configuration. In this example backups is to be run interactively and snapshots is to be run on a schedule by
cron, so the default is set to backups to make it easier to run interactively.

Configuration for a Remote Repository: backups

The second file is the configuration file for backups:

repository = 'backups:archives'
prefix = '{host_name}-'
encryption = 'keyfile'
passphrase = 'crone excess mandate bedpost'

src_dirs = '~'
excludes = '''

~/.cache
**/*~
**/.git
**/__pycache__
**/.*.swp

'''
exclude_if_present = '.nobackup'

check_after_create = 'latest'
prune_after_create = True
compact_after_delete = True
keep_daily = 7

(continues on next page)

24 Chapter 10. Contents



Emborg Documentation, Release 1.38.2

(continued from previous page)

keep_weekly = 4
keep_monthly = 12
keep_yearly = 2

This configuration assumes that you have a backups entry in your SSH config file that contains the appropriate user
name, host name, port number, and such for the server that contains your remote repository. It also assumes that you
have shared an SSH key with this server so you do not need to specify a password each time you back up, and that
that key is pre-loaded into your SSH agent. The repository is actually in the archives directory on that server, and each
back-up archive will be prefixed with your local host name, allowing you to share this repository with other machines.

You specify what to backup using src_dirs and what not to backup using excludes. Nominally both src_dirs and
excludes take lists of strings, but you can also specify them using a single string, in which case the strings are broken
into individual lines, any blank lines or lines that begin with # are ignored, and then the white space is removed from
the front and back of each line.

This configuration file ends with settings that tell Emborg to run check and prune operations after creating a backup,
and it gives the desired prune schedule.

This is just an example, and a rather minimal one at that. You should not use it without understanding each of the
settings. The encryption setting is a particularly important one for you to understand and set properly. More compre-
hensive information about configuring Emborg can be found in the section on Configuring.

With this configuration, you can now initialize your repository and use it to perform backups. If the repository does
not yet exist, initialize it using:

$ emborg init

Then perform a back up using:

$ emborg create

or simply:

$ emborg

This works because create is the default action and backups is the default configuration.

Then, you can convince yourself it is working as expected by moving a directory out of the way and using Emborg to
restore it:

$ mv bin bin-saved
$ emborg restore bin

Configuration for a Local Repository: snapshots

The third file is the configuration file for snapshots:

repository = '/mnt/snapshots/{user_name}'
prefix = '{config_name}-'
encryption = 'none'

src_dirs = '~'
excludes = '''

~/.cache
(continues on next page)

10.1. Getting Started 25



Emborg Documentation, Release 1.38.2

(continued from previous page)

**/*~
**/.git
**/__pycache__
**/.*.swp

'''
prune_after_create = True
compact_after_delete = True
keep_within = '1d'

In this case the repository is on the local machine and it is not encrypted. It again backs up your home directory, but
for this configuration the archives are only kept for a day.

The repository must be initialized before it can be used:

$ emborg -c snapshots init

Here the desired configuration was specified because it is not the default. Now, a cron entry can be created using
crontab -e that creates a snapshot every 10 minutes:

*/10 * * * * emborg --config snapshots --mute create

Once it has run, you can pull a file from the latest snapshot using:

$ emborg -c snapshots restore passwords.gpg

Overdue Backups

Emborg allows you to easily determine when your files were last backed up using:

$ emborg due

However, you must remember to run this command. Emborg also provides emborg-overdue to provide automated
reminders. You configure emborg-overdue using a configuration file: ~/.config/emborg/overdue.conf. For example:

default_maintainer = 'me@mydomain.com'
dumper = 'me@mydomain.com'
default_max_age = 36 # hours
root = '~/.local/share/emborg'
repositories = [

dict(host='laptop (snapshots)', path='snapshots.lastbackup', max_age=0.2),
dict(host='laptop (backups)', path='backups.lastbackup'),

]

Then you would configure cron to run emborg-overdue using something like:

00 * * * * ~/.local/bin/emborg-overdue --quiet --mail

This runs emborg-overdue every hour on the hour, and it reports any delinquent backups by sending mail to the appro-
priate maintainer (the message is sent from the dumper). You can specify any number of repositories to check, and
for each repository you can specify host (a descriptive name), path (the path to the repository from the root directory,
a max_age in hours, and a maintainer. You can also specify defaults for the maintainer and max_age. When run, it
checks the age of each repository and sends email to the appropriate maintainer if it exceeds the maximum allowed age.

26 Chapter 10. Contents



Emborg Documentation, Release 1.38.2

In this example the actual repository is not checked directly, rather the lastbackup file is checked. This is a file that is
updated by Emborg after every back up. This file is found in the Emborg output directory. Every time Emborg runs it
creates a log file that can also be found in this directory. That logfile can be viewed directly, or you can view it using
the log command:

$ emborg log

10.1.3 Configuring Emborg to Backup an Entire Machine

The primary difference between this example and the previous is that Emborg needs to be configured and run by root.
This allows all the files on the machine to be backed up regardless of who owns them. Other than being root, the
mechanics are very much the same.

To start, run emborg as root to create the initial configuration files:

# emborg

This creates the /root/.config/emborg directory in the root account and populates it with three files: settings, root, home.
You can delete home and remove the reference to it in settings, leaving only:

configurations = 'root'
default_configuration = 'root'

This assumes that most of the settings will be placed in root:

repository = 'backups:backups/{host_name}'
prefix = '{config_name}-'
passphrase = 'western teaser landfall spearhead'
encryption = 'repokey'

src_dirs = '/'
excludes = '''

/dev
/home/*/.cache
/proc
/root/.cache
/run
/sys
/tmp
/var

'''

check_after_create = 'latest'
compact_after_delete = True
prune_after_create = True
keep_daily = 7
keep_weekly = 4
keep_monthly = 12

Again, this is a rather minimal example. In this case, repokey is used as the encryption method, which is only suitable
if the repository is on a server you control.

When backing up the root file system it is important to exclude directories that cannot or should not be backed up.
Those include: /dev, /proc, /run, /sys, and /tmp.

10.1. Getting Started 27



Emborg Documentation, Release 1.38.2

As before you need to initialize the repository before it can be used:

# emborg init

To assure that the backups are run daily, the following is added to /etc/cron.daily/emborg:

#/bin/sh
# Run root backups

emborg --mute --config root create

This is preferred for laptops because cron.daily is guaranteed to run each day as long as machine is turned on for any
reasonable length of time.

10.2 Commands

You invoke Emborg from your shell by entering a line of the form:

$ emborg [global-options] <command> [command-options]

Details about the options and commands can be accessed with:

$ emborg help

or:

$ emborg help <command>

The available commands are:

borg
run a raw borg command

breaklock
breaks the repository and cache locks

check
checks the repository and its archives

compact
compact segment files in the repository

compare
compare local files with those in an archive

configs
list available backup configurations

create
create an archive of the current files

delete
delete an archive currently contained in the repository

diff
show the differences between two archives

28 Chapter 10. Contents



Emborg Documentation, Release 1.38.2

due
days since last backup

extract
recover file or files from archive

help
give information about commands or other topics

info
print information about a backup

init
initialize the repository

list
list the archives currently contained in the repository

log
print logfile for the last emborg run

manifest
list the files contained in an archive

mount
mount a repository or archive

prune
prune the repository of excess archives

restore
recover file or files from archive in place

settings
list settings of chosen configuration

umount
un-mount a previously mounted repository or archive

version
display emborg version

These commands are described in more detail below. Not everything is described here. Run emborg help <cmd> for
the details.

10.2.1 Exit Status

Emborg returns with an exit status of 0 if it completes without issue. It returns with an exit status of 1 if was able to
terminate normally but some exceptional condition was encountered along the way. For example, if the compare or
diff detects a difference or if due command detects the backups are overdue, a 1 is returned. In addition, 1 is returned if
Borg detects an error but is able to complete anyway. However, if Emborg or Borg suffers errors and cannot complete,
2 is returned.

10.2. Commands 29



Emborg Documentation, Release 1.38.2

10.2.2 Borg

Runs raw Borg commands. Before running the passphrase or passcommand is set. Also, if @repo is found on the
command line, it is replaced by the path to the repository.

$ emborg borg key export @repo key.borg
$ emborg borg list @repo::root-2020-04-11T23:38:37

Emborg runs the Borg command from working_dir if it is specified and / if not.

10.2.3 BreakLock

This command breaks the repository and cache locks. Use carefully and only if no Borg process (on any machine) is
trying to access the Cache or the Repository.

$ emborg break-lock
$ emborg breaklock

10.2.4 Check

Check the integrity of the repository and its archives. The most recently created archive is checked if one is not specified
unless --all is given, in which case all archives are checked.

The --repair option attempts to repair any damage found. Be aware that the –repair option is considered a dangerous
operation that might result in the complete loss of corrupt archives. It is recommended that you create a backup copy
of your repository and check your hardware for the source of the corruption before using this option.

10.2.5 Compact

This command frees repository space by compacting segments.

Use this regularly to avoid running out of space, however you do not need to it after each Borg command. It is especially
useful after deleting archives, because only compaction really frees repository space.

Requires Borg version 1.2 or newer. Prior to version 1.2 the compact functionality was part of the Borg prune command.
As of version 1.2 this functionality was split into its own command.

If you set compact_after_delete Emborg automatically runs this command after every use of the delete and prune
commands.

10.2.6 Compare

Reports and allows you to manage the differences between your local files and those in an archive. The base command
simply reports the differences:

$ emborg compare

The --interactive option allows you to manage those differences. Specifically, it will open an interactive file com-
parison tool that allows you to compare the contents of your files and copy differences from the files in the archive to
your local files:

$ emborg compare -i

30 Chapter 10. Contents



Emborg Documentation, Release 1.38.2

You can specify the archive by name or by date or age. If you do not you will use the most recent archive:

$ emborg compare -a continuum-2020-12-04T17:41:28
$ emborg compare -d 2020-12-04
$ emborg compare -d 1w

You can specify a path to a file or directory to compare, if you do not you will compare the files and directories of the
current working directory.

$ emborg compare tests
$ emborg compare ~/bin

This command uses external tools to view and manage the differences. Before it can be used it must be configured
to use these tools, which is done with the manage_diffs_cmd and report_diffs_cmd settings. In addition, the de-
fault_mount_point must be configured. The manage_diffs_cmd is used if the --interactive (or -i) option is given,
and report_diffs_cmd otherwise. However, if only one is given it is used in both cases. So, if you find that you only
want to use the interactive tool to view and manage your differences, you can simply not specify report_diffs_cmd,
which would eliminate the need to specify the -i option.

The command operates by mounting the desired archive, performing the comparison, and then unmounting the direc-
tory. Problems sometimes occur that can result in the archive remaining mounted. In this case you will need to resolve
any issues that are preventing the unmounting, and then explicitly run the umount command before you can use this
Borg repository again.

This command differs from the diff command in that it compares local files to those in an archive where as diff compares
the files contained in two archives.

10.2.7 Configs

List the available backup configurations. Each configuration corresponds to a settings file in your configuration direc-
tory (~/.config/emborg). Settings common to all your configurations should be placed in ~/.config/emborg/settings.
You can see available configurations using:

$ emborg configs

To run a command on a specific configuration, add –config=<cfg> or -c cfg before the command. For example:

$ emborg -c home create

10.2.8 Create

This creates an archive in an existing repository. An archive is a snapshot of your files as they currently exist. Borg is
a de-duplicating backup program, so only the changes from the already existing archives are saved.

$ emborg create

Before creating your first archive, you must use the init command to initialize your repository.

This is the default command, so you can create an archive with simply:

$ emborg

If the backup seems to be taking a long time for no obvious reason, run the backup in verbose mode:

10.2. Commands 31



Emborg Documentation, Release 1.38.2

$ emborg -v create

This can help you understand what is happening.

Emborg runs the create command from working_dir if it is specified and current directory if not.

10.2.9 Delete

Delete one or more archives currently contained in the repository:

$ emborg delete continuum-2020-12-05T19:23:09

If no archive is specified, the latest is deleted.

The disk space associated with deleted archives is not reclaimed until the compact command is run. You can specify
that a compaction is performed as part of the deletion by setting compact_after_delete. If set, the --fast flag causes
the compaction to be skipped. If not set, the --fast flag has no effect.

Specifying --repo results in the entire repository being deleted. Unlike with borg itself, no warning is issued and no
additional conformation is required.

10.2.10 Diff

Shows the differences between two archives:

$ emborg diff continuum-2020-12-05T19:23:09 continuum-2020-12-04T17:41:28

You can constrain the output listing to only those files in a particular directory by adding that path to the end of the
command:

$ emborg diff continuum-2020-12-05T19:23:09 continuum-2020-12-04T17:41:28 .

This command differs from the compare command in that it only reports a list of files that differ between two archives,
whereas compare shows how local files differ from those in an archive and can show you the contents of those files and
allow you interactively copy changes from the archive to your local files.

10.2.11 Due

When run with no options it indicates when the last backup and squeeze operations were performed. A backup operation
is the running of the create command. A squeeze operation is the running of both the prune and compact commands.
The time to the latest squeeze operation is the time to the older of the most recent prune or compact commands. For
example:

$ emborg due
home: 11 hours since last backup. 2 weeks since last squeeze.

Adding the –backup-days option or –squeeze-days results in the message only being printed if the backup or squeeze
has not been performed within the specified number of days. If both are specified and both limits are violated, only the
backup violation is reported as it is considered the most urgent.

Adding the –email option results in the message being sent to the specified address rather than printed. This allows
you to run the due command from a cron script in order to send your self reminders to do a backup if one has not
occurred for a while. It is often run with the –no-log option to avoid replacing the log file with one that is inherently
uninteresting:

32 Chapter 10. Contents



Emborg Documentation, Release 1.38.2

$ emborg --no-log due --backup-days 1 --backup-days 7 --email me@mydomain.com

You can specify a specific message to be printed with –message. In this case, the following replacements are available:

{action}:
Replaced with the type of operation reported on. It is either backup or squeeze.

{config}:
Replaced with the name of the configuration being reported on.

{cmd}:
Replaced with the name of the command being reported on. It can be create, prune or compact.
It will be create if reporting on a backup operation, and either prune or compact if reporting on a
squeeze operation, depending on which is older.

{days}:
Replaced by the number of days since the last backup or squeeze. You can add floating-point format
codes to specify the resolution used. For example: {days:.1f}.

{elapsed}:
Replaced with a humanized description of how long it has been since the last backup.

So --message '{elapsed} since last {action} of {config}.' might produce something like this:

12 hours since last backup of home.

With composite configurations the message is printed for each component config unless –oldest is specified, in which
case only the oldest is displayed.

10.2.12 Extract

You extract a file or directory from an archive using:

$ emborg extract home/shaunte/bin

Use manifest to determine what path you should specify to identify the desired file or directory. You can specify more
than one path. Usually, they will be paths that are relative to /, thus the paths should look like absolute paths with the
leading slash removed. The paths may point to directories, in which case the entire directory is extracted. It may also
be a glob pattern.

By default, the most recent archive is used, however, if desired you can explicitly specify a particular archive. For
example:

$ emborg extract --archive continuum-2020-12-05T12:54:26 home/shaunte/bin

Alternatively you can specify a date or date and time. If only the date is given the time is taken to be midnight. The
oldest archive that is younger than specified date and time is used. For example:

$ emborg extract --date 2021-04-01 home/shaunte/bin
$ emborg extract --date 2021-04-01T15:30 home/shaunte/bin

Alternatively, you can specify the date in relative terms:

$ emborg extract --date 3d home/shaunte/bin

In this case 3d means 3 days. You can use s, m, h, d, w, M, and y to represent seconds, minutes, hours, days, weeks,
months, and years.

10.2. Commands 33



Emborg Documentation, Release 1.38.2

Finally, if you specify a simple number, it is taken to be the index of the desired archive, where 0 represents the most
recent, 1 the next most recent, etc.

$ emborg extract --date 3 home/shaunte/bin

The extracted files are placed in the current working directory with the original hierarchy. Thus, the above commands
create the directory:

./home/shaunte/bin

See the restore command as an alternative to extract that replaces the existing files rather than simply copying them
into the current directory.

10.2.13 Help

Show information about Emborg:

$ emborg help

You can ask for help on a specific command or topic with:

$ emborg help <topic>

For example:

$ emborg help extract

10.2.14 Info

This command prints out the locations of important files and directories.

$ emborg info

You can also get information about a particular archive.

$ emborg info home-2022-11-03T23:07:25

10.2.15 Init

Initializes a Borg repository. This must be done before you create your first archive.

$ emborg init

34 Chapter 10. Contents



Emborg Documentation, Release 1.38.2

10.2.16 List

List available archives.

$ emborg list

10.2.17 Log

Show the log from the previous run.

$ emborg log

Most commands save a log file, but some do not. Specifically, configs, due, help, log, settings and version do not.
Additionally, no command will save a log file if the --no-log command line option is specified. If you need to debug
a command that does not normally generate a log file and would like the extra detail that is normally included in the
log, specify the --narrate command line option.

If you wish to access the log files directly, they reside in ~/.local/share/emborg.

10.2.18 Manifest

Once a backup has been performed, you can list the files available in your archive using:

$ emborg manifest

You specify a path. If so, the files listed are those contained within that path. For example:

$ emborg manifest .
$ emborg manifest -R .

The first command lists the files in the archive that were originally contained in the current working directory. The
second lists the files that were in specified directory and any sub directories.

If you do not specify an archive, as above, the latest archive is used.

You can explicitly specify an archive:

$ emborg manifest --archive continuum-2021-04-01T12:19:58

Or you choose an archive based on a date and time. The oldest archive that is younger than specified date and time is
used.

$ emborg manifest --date 2021-04-01
$ emborg manifest --date 2021-04-01T12:45

You can also specify the date in relative terms:

$ emborg manifest --date 1w

where s, m, h, d, w, M, and y represents seconds, minutes, hours, days, weeks, months, and years.

Finally, if you specify a simple number, it is taken to be the index of the desired archive, where 0 represents the most
recent, 1 the next most recent, etc.

10.2. Commands 35



Emborg Documentation, Release 1.38.2

$ emborg manifest --date 7

The manifest command provides a variety of sorting and formatting options. The formatting options are under the
control of the manifest_formats setting. For example:

$ emborg manifest

This outputs the files in the order and with the format produced by Borg. If a line is green if the corresponding file is
healthy, and if red it is broken (see Borg list command for more information on broken files).

$ emborg manifest -l
$ emborg manifest -n

These use the Borg order but change the amount of information shown. With -l the long format is used, which by
default contains the size, the date, and the path. With -n the name is used, which by default contains only the path.

Finally:

$ emborg manifest -S
$ emborg manifest -D

The first sorts the files by size. It uses the size format, which by default contains only the size and the path. The second
sorts the files by modification date. It uses the date format, which by default contains the day, date, time and the path.
More choices are available; run emborg help manifest for the details.

You can use files as an alias for manifest:

$ emborg files

10.2.19 Mount

Once a backup has been performed, you can mount it and then look around as you would a normal read-only filesystem.

$ emborg mount backups

In this example, backups acts as a mount point. If it exists, it must be a directory. If it does not exist, it is created.

If you do not specify a mount point, the value of default_mount_point setting is used if set.

If you do not specify an archive, as above, the most recently created archive is mounted.

You can explicitly specify an archive:

$ emborg mount --archive continuum-2015-04-01T12:19:58 backups

You can mount the files that existed on a particular date using:

$ emborg mount --date 2021-04-01 backups
$ emborg mount --date 2021-04-01T18:30 backups

If the time is not given, it is taken to be midnight.

You can also specify the date in relative terms:

$ emborg mount --date 1w backups

36 Chapter 10. Contents

https://borgbackup.readthedocs.io/en/stable/usage/list.html#description


Emborg Documentation, Release 1.38.2

where s, m, h, d, w, M, and y represents seconds, minutes, hours, days, weeks, months, and years.

Finally, if you specify a simple number, it is taken to be the index of the desired archive, where 0 represents the most
recent, 1 the next most recent, etc.

$ emborg mount --date 7 backups

When a date is given, the oldest archive that is younger than the specified date or time is used.

Finally, you can mount all the available archives:

$ emborg mount --all backups

You will need to un-mount the repository or archive when you are done with it. To do so, use the umount command.

10.2.20 Prune

Prune the repository of excess archives. You can use the keep_within, keep_last, keep_minutely, keep_hourly,
keep_daily, keep_weekly, keep_monthly, and keep_yearly settings to control which archives should be kept. At least
one of these settings must be specified to use prune:

$ emborg prune

The prune command deletes archives that are no longer needed as determined by the prune rules. However, the disk
space is not reclaimed until the compact command is run. You can specify that a compaction is performed as part of
the prune by setting compact_after_delete. If set, the --fast flag causes the compaction to be skipped. If not set, the
--fast flag has no effect.

10.2.21 Restore

This command is very similar to the extract command except that it is meant to be run in place. Thus, the paths given
are converted to absolute paths and then the borg extract command is run from the root directory (/) so that the existing
files are replaced by the extracted files.

For example, the following commands restore your .bashrc file:

$ cd ~
$ emborg restore .bashrc

Emborg runs the restore command from working_dir if it is specified and the current directory if not.

By default, the most recent archive is used, however, if desired you can explicitly specify a particular archive. For
example:

$ emborg restore –archive continuum-2020-12-05T12:54:26 resume.doc

Or you choose an archive based on a date and time. The oldest archive that is younger than specified date and time is
used.

$ emborg restore –date 2021-04-01 resume.doc $ emborg restore –date 2021-04-01T18:30 resume.doc

Or you can specify the date in relative terms:

$ emborg restore –date 3d resume.doc

In this case 3d means 3 days. You can use s, m, h, d, w, M, and y to represent seconds, minutes, hours, days, weeks,
months, and years.

10.2. Commands 37



Emborg Documentation, Release 1.38.2

Finally, if you specify a simple number, it is taken to be the index of the desired archive, where 0 represents the most
recent, 1 the next most recent, etc.

$ emborg restore --date 7 resume.doc

This command is very similar to the extract command except that it is meant to replace files in place. It also takes
similar options.

10.2.22 Settings

This command displays all the settings that affect a backup configuration.

$ emborg settings

Add --all option to list out all available settings and their descriptions rather than the settings actually specified and
their values.

10.2.23 Umount

Un-mount a previously mounted repository or archive:

$ emborg umount backups
$ rmdir backups

where backups is the existing mount point.

If you do not specify a mount point, the value of default_mount_point setting is used if set.

10.2.24 Version

Prints the Emborg version.

$ emborg version

10.3 Configuring

Typically the settings files go in the default location for configuration files on your system. On Linux systems, that
location is ~/.config/emborg. Other systems use more awkward locations, so while Emborg creates initial versions in
the default location, you are free to move them to ~/.config/emborg if you prefer. Emborg always checks for the files in
~/.config/emborg if it exists before looking in the default location for your system.

You need a shared settings file and then one file for each backup configuration you need. Except for configurations and
default_configuration any setting may be placed in either the shared file or the configuration specific file. If a setting
is found in both files, the version in the configuration specific file dominates.

You can get a complete list of available configuration settings by running:

$ emborg settings --available

38 Chapter 10. Contents



Emborg Documentation, Release 1.38.2

10.3.1 Shared Settings

Shared settings go in ~/.config/emborg/settings. This is a Python file that contains values shared by all of your config-
urations. It might look like the following:

default_configuration = 'home' # default backup configuration
configurations = 'home websites' # available backup configurations
avendesora_account = 'borg-backup' # Avendesora account name (holds passphrase for␣
→˓encryption key)
passphrase = None # passphrase to use (if specified, Avendesora is␣
→˓not used)
encryption = 'keyfile' # encryption method
prune_after_create = True # run prune as the last step of an archive creation
check_after_create = 'latest' # run check as the last step of an archive creation
#notify = "me@mydomain.com" # email address to notify when things go wrong
notifier = 'notify-send -u normal {prog_name} "{msg}"'

# program used to send realtime notifications
# generally you use notify or notifier, but not␣

→˓both
# use notifier for interactive backups
# and notify for scheduled backups
# notification program

upload_ratelimit = 2000 # bandwidth limit in kbps
umask = '077' # umask to use when creating the archives
repository = 'archives:/mnt/backups/{host_name}/{user_name}/{config_name}'

# remote directory for repository
archive = '{host_name}-{{now}}' # naming pattern used for the archives

# May contain {<name>} where <name> may be any of host_name, user_name,
# prog_name config_name, or any of the user specified settings.
# Double up the braces to specify parameters that should be interpreted
# by borg rather than by emborg.

exclude_caches = True # do not backup directories that contain CACHEDIR.
→˓TAG
exclude_if_present = '.nobackup' # do not backup directories containing this file
keep_within = '1d' # keep all archives within this time interval
keep_hourly = '48' # number of hourly archives to keep
keep_daily = '7' # number of daily archives to keep
keep_weekly = '4' # number of weekly archives to keep
keep_monthly = '12' # number of weekly archives to keep
keep_yearly = '2' # number of weekly archives to keep

If you encrypt your backups, you can specify the encryption key in this file as passphrase. In this case, you should
be careful to assure the file is not readable by others (chmod 600 settings). Alternatively, you can use passcommand,
which runs a command that returns your pass phrase. Finally, you can use Avendesora to securely hold your key by
specifying the Avendesora account name of the key to avendesora_account.

This example assumes that there is one backup configuration per repository. You can instead have more than one
configurations share a single repository by adjusting repository and adding glob_archives like so:

repository = 'archives:/mnt/backups/{host_name}/{user_name}'
glob_archives = '{config_name}-*'

In this case several backup configurations would deposit archives into a single directory, allowing them to reduce the
total space required to hold the archives if there are shared files between the configurations. The glob_archives setting
is required to allow each backup configuration to recognize its own archives. All archive names that match the glob

10.3. Configuring 39

https://avendesora.readthedocs.io


Emborg Documentation, Release 1.38.2

string associate with this configuration.

10.3.2 Configurations

Each backup configuration must have a settings file in ~/.config/emborg. The name of the file is the name of the backup
configuration. It might look like the following:

src_dirs = '~' # absolute paths to directories to be backed up
excludes = """

~/tmp
~/**/.hg
~/**/.git
~/**/*.pyc
~/**/.*.swp
~/**/.*.swo

""" # list of glob strings of files or directories to skip
one_file_system = False # okay to traverse filesystems

# commands to be run before and after backups (run from working directory)
run_before_first_backup = """

# remove the detritus before backing up
~/bin/clean-home >& {log_dir}/clean-home.log

"""
run_after_last_backup = """

# rebuild my documentation, it was deleted by clean-home
~/bin/rebuild-documentation > /dev/null

"""

# if set, this file or these files must exist or backups will quit with an error
must_exist = '~/doc/thesis'

String values may incorporate other string valued settings. Use braces to interpolate another setting. In addition, you
may interpolate the configuration name (‘config_name’), the host name (‘host_name’), the user name (‘user_name’),
Emborg’s program name (‘prog_name’), your home directory (‘home_dir’), the configuration directory (‘config_dir’)
or the output directory (‘log_dir’). An example of this is shown in both repository and archive above. Doubling up
the braces acts to escape them. In this way you gain access to Borg placeholders. archive shows an example of that.
Interpolation is not performed on any setting whose name is given in do_not_expand.

Settings that take lists of strings can be specified as a single multi-line string where one item is given per line. Lines
that begin with # are ignored, as are empty lines. For example:

excludes = """
# these directories would be problematic if backed up
/dev
/proc

# these directories contain largely derived files which can be recreated
/run
/sys
/tmp
/var

"""

40 Chapter 10. Contents



Emborg Documentation, Release 1.38.2

10.3.3 Paths

When Borg places files into a repository, it always uses relative paths. However, you may specify them either using
relative paths or absolute paths. Borg starts backing up from the recursion roots. These are directories that you specify
to src_dirs or using the R key in patterns or patterns_from. Within a recursion root you can specify particular paths
to exclude and within those you can specify particular files to include. This is done using excludes and exclude_from
and using the path keys (+, -, !) in patterns and patterns_from. When you use a relative path to specify a recursion
root then you should also use relative paths for its include and exclude paths. Similarly, if you use an absolute path
for the recursion root then you should also use absolute paths for its include and exclude paths. Borg is okay with you
having some recursion roots specified with relative paths and some with absolute paths, but this confuses Emborg when
it comes time to extract or restore files from your repository. With Emborg, all of your recursive roots must either be
specified using relative paths or they must all be specified with absolute paths.

If you specify absolute paths, Borg converts them to relative paths as it inserts them into the repository by stripping
off the leading / from the path. If you specify relative paths, it inserts them as is. When using Borg directly, the
relative paths would be relative to the directory where borg create is invoked. For this reason, borg create must always
be invoked from the same directory when using relative paths. To make this work, Emborg internally changes to
working_dir before running borg create. Thus, if you choose to use relative paths, you should also specify working_dir,
which should be specified with an absolute path. For example:

working_dir = '~'
src_dirs = '.'
excludes = """

.cache
*~

"""

If you do not specify working_dir, it defaults to /.

Other than paths to include files, all relative paths specified in your configuration are relative to working_dir. This can
be confusing, so it is recommended that all paths in your configuration, other than those being passed directly to Borg
should be given using absolute paths. This includes settings such as default_mount_point, must_exist, patterns_from,
and exclude_from.

Paths specified directly to Emborg are processed and any leading tildes (~) are expanded to the appropriate user’s home
directory. However, paths specified in exclude_from and patterns_from files are processed directly by Borg, which does
not expand tildes to a user’s home directory.

10.3.4 Includes

Any settings file may include the contents of another file by using include. You may either specify a single include file
as a string or a collection as a list of strings or a multi-line string. For example:

include = 'file-to-include'

or:

include = """
first-file-to-include
second-file-to-include

"""

If you specify a relative path for an include file, it it relative to the file that includes it.

10.3. Configuring 41



Emborg Documentation, Release 1.38.2

10.3.5 Composite Configurations

It is possible to define composite configurations that allow you to run several configurations at once. This might be
useful if you want to backup to more than one repository for redundancy. Or perhaps you have files that benefit from
different prune schedules.

As an example, consider having three configurations that you would like to run all at once. You can specify these
configurations as follows:

configurations = 'home lamp data all=home,lamp,data'

In this case home, lamp, and data are simple configurations and all is a composite configuration. home, lamp, and data
would have configuration files whereas all would not. The composite configuration should be specified without spaces.

You can run a specific configuration with:

$ emborg -c home extract ~/bin

You can run all three configurations with:

$ emborg -c all create

Only certain commands support composite configurations, and if a command does support composite configurations
it may either apply each subconfig in sequence, or only the first subconfig.

Command Response to Composite Config
borg error
breaklock error
check run on each subconfig
configs does not use any configurations
create run on each subconfig
delete error
diff error
due run on each subconfig
extract run only on first subconfig
help does not use any configurations
info run on each subconfig
initialize run on each subconfig
list run only on first subconfig
log run on each subconfig
manifest run only on first subconfig
mount run only on first subconfig
prune run on each subconfig
restore run only on first subconfig
settings error
umount run only on first subconfig
version does not use any configurations

42 Chapter 10. Contents



Emborg Documentation, Release 1.38.2

10.3.6 Patterns

Patterns are a relatively new feature of Borg. They are an alternate way of specifying which files are backed up, and
which are not. Patterns can be specified in conjunction with, or instead of, src_dirs and excludes. One powerful feature
of patterns is that they allow you to specify that a directory or file should be backed up even if it is contained within a
directory that is being excluded.

An example that uses patterns in lieu of src_dirs and excludes is:

patterns = """
R /
+ /home/susan
- /home
- /dev
- /opt
- /proc
- /run
- /sys
- /tmp
- /var

"""

In this example, R specifies a root, which would otherwise be specified to src_dirs. + specifies path that should be
included in the backups and - specifies a path that should be excluded. With this example, Susan’s home directory is
included while all other home directories are not. In cases such as this, the subdirectory to include must be specified
before the directory that contains it is excluded. This is a relatively simple example, additional features are described
in the Borg patterns documentation.

10.3.7 Archive Retention

You use the retention limits (the keep_X settings) to specify how long to keep archives after they have been created. A
good description of the use of these settings can be found on the Borg Prune Command page.

Generally you want to thin the archives out more and more as they age. When choosing your retention limits you need to
consider the nature of the files you are archiving. Specifically you need to consider how often the files change, whether
you would want to recover prior versions of the files you keep and if so how many prior versions are of interest, and
how long precious files may be missing or damaged before you notice that they need to be restored.

If files are changing all the time, long high retention limits result in high storage requirements. If you want to make
sure you retain the latest version of a file but you do not need prior versions, then you can reduce your retention limits
to reduce your storage requirements. For example, consider a directory of log files. Log files generally change all
the time, but they also tend to be cumulative, meaning that the latest file contains the information contained in prior
versions of the same file, so keeping those prior versions is of low value. In this situation using “keep_last N” where
N is small is a good approach.

Now consider a directory of files that should be kept forever, such as family photos or legal documents. The loss of
these files due to disk corruption or accidental deletion might not be noticed for years. In this case you would want
to specify “keep_yearly N” where N is large. These files never change, so the de-duplication feature of Borg avoids
growth in storage requirements despite high retention limits.

You cannot specify retention limits on a per file or per directory basis within a single configuration. Instead, if you feel
it is necessary, you would create individual configurations for files with different retention needs. For example, as a
system administrator you might want to create separate configurations for operating system files, which tend to need
low retention limits, and users home directories, which benefit from longer retention limits.

10.3. Configuring 43

https://borgbackup.readthedocs.io/en/stable/usage/help.html
https://borgbackup.readthedocs.io/en/stable/usage/prune.html


Emborg Documentation, Release 1.38.2

Remember that your retention limits are not enforced until you run the prune command. Furthermore, with Borg 1.2
and later, after running the prune command, the disk space is not reclaimed until you run the compact command. You
can automate pruning and compaction using the prune_after_create and compact_after_delete settings.

10.3.8 Confirming Your Configuration

Once you have specified your configuration you should carefully check it to make sure you are backing up the files you
need and not backing up the files you don’t need. It is important to do this in the beginning, otherwise you might find
your self with a bloated repository that does not contain the files you require.

There are a number of ways that Emborg can help you check your work.

1. You can run emborg settings to see the values used by Emborg for all settings.

2. You can use Borg’s --dry-run option to perform a practice run and see what will happen. For example:

$ emborg --dry-run create --list

will show you all of the files that are to be backed up and which of those files have changed since the last time
you created an archive.

3. After running Emborg you can run emborg log to see what Emborg did in detail and what it asked Borg to do.
The log contains the full Borg command invocation and Borg’s response.

4. Once you have created your repository and created your first archive, you can use the --sort-by-size option
of the manifest command to find the largest files that were copied into the repository. If they are not needed, you
can add them to your exclude list, delete the archive, and then recreate the archive, this time without the large
unnecessary files.

10.3.9 Emborg Settings

These settings control the behavior of Emborg.

archive

archive is a template that specifies the name of each archive. A typical value might be:

archive = '{config_name}-{{now}}'

Emborg examines the string for names within a single brace-pair and replaces them with the value specified by the
name. Names within double-brace pairs are interpreted by Borg.

More than one backup configuration can share the same repository. This allows Borg’s de-duplication feature to work
across all configurations, resulting in less total space needed for the combined set of all your archives. In this case you
must also set the glob_archives setting so that each backup configuration can recognize its own archives. It is used by
the Check, Delete, Info, List, Mount, and Prune commands to filter out archives not associated with the desired backup
configuration.

The archive setting should include {{now}} so each archive has a unique name, however you can customize how now
is expanded. For example, you can reduce the length of the timestamp using:

archive = '{host_name}-{{now:%Y%m%d}}'

However, you should be aware that by including only the date in the archive name rather than the full timestamp, you
are limiting yourself to creating one archive per day. A second archive created on the same day simply writes over the
previous archive.

44 Chapter 10. Contents



Emborg Documentation, Release 1.38.2

avendesora_account

An alternative to passphrase. The name of the Avendesora account used to hold the passphrase for the encryption key.
Using Avendesora keeps your passphrase out of your settings file, but requires that GPG agent be available and loaded
with your private key. This is normal when running interactively. When running batch, say from cron, you can use the
Linux keychain command to retain your GPG credentials for you.

avendesora_field

Specifies the name of the field in Avendesora that holds the encryption passcode. It is used along with avendes-
ora_account. This setting is not needed if the field name is Avendesora’s default.

borg_executable

The path to the Borg executable or the name of the Borg executable. By default it is simply borg.

check_after_create

Whether the archive or repository should be checked after an archive is created. May be one of the following: False,
True, "latest", "all", or "all in repository". If False, no checking is performed. If "latest", only the
archive just created is checked. If True or "all", all archives associated with the current configuration are checked.
Finally, if "all in repository", all the archives contained in the repository are checked, including those associated
with other archives. In all cases checks are performed on the repository and the archive or archives selected, but in
none of the cases is data integrity verification performed. To check the integrity of the data you must explicitly run the
check command. Regardless, the checking can be quite slow if "all" or "all in repository" are used.

colorscheme

A few commands colorize the text to convey extra information. You can optimize the tints of those colors to make
them more visible and attractive. colorscheme should be set to “none”, “light”, or “dark”. With “none” the text is not
colored. In general it is best to use the “light” colorscheme on dark backgrounds and the “dark” colorscheme on light
backgrounds.

compact_after_delete

If True, the compact command is run after deleting an archive or pruning a repository.

Note: This is an important setting if you are using Borg 1.2 or later. You should either set this true or manage the
compaction in another way. Setting it true results in slightly slower backups. The alternative is generally to configure
cron or anacron to run the compact command routinely for you.

Do not use this setting if you are not using Borg version 1.2 or later.

10.3. Configuring 45

https://avendesora.readthedocs.io


Emborg Documentation, Release 1.38.2

configurations

The list of available Emborg configurations. To be usable the name of a configuration must be in this list and there
must be a file of the same name in the ~/.config/emborg directory.

The value may be specified as a list of strings or just as a string. If specified as a string, it is split on white space to
form the list.

cronhub_url

This setting specifies the URL to use for cronhub.io. Normally it is not needed. If not specified https://cronhub.io
is used. You only need to specify the URL in special cases.

cronhub_uuid

If this setting is provided, Emborg notifies cronhub.io when the archive is being created and whether the creation was
successful. The value of the setting should be a UUID (a 32 digit hexadecimal number that contains 4 dashes). If given,
this setting should be specified on an individual configuration. For example:

cronhub_uuid = '51cb35d8-2975-110b-67a7-11b65d432027'

default_configuration

The name of the configuration to use if one is not specified on the command line.

default_mount_point

The path to a directory that should be used if one is not specified on the mount command or umount command com-
mands. When set the mount point directory becomes optional on these commands. You should choose a directory that
itself is not subject to being backed up to avoid creating a loop. For example, you might consider something in /tmp:

default_mount_point = '/tmp/emborg'

do_not_expand

All settings that are specified as strings or lists of strings may contain placeholders that are expanded before use. The
placeholder is replaced by the value it names. For example, in:

archive = '{host_name}-{{now}}'

host_name is a placeholder that is replaced by the host name of your computer before it is used (now is escaped using
double braces and so does not act as a placeholder for Emborg.

do_not_expand is a list of names for settings that should not undergo placeholder replacement. The value may be
specified as a list of strings or just as a string. If specified as a string, it is split on white space to form the list.

46 Chapter 10. Contents

https://cronhub.io
https://cronhub.io


Emborg Documentation, Release 1.38.2

encoding

The encoding used when communicating with Borg. The default is utf-8, which is generally suitable for Linux systems.

encryption

The encryption mode that is used when first creating the repository. Common values are none, authenticated,
repokey, and keyfile. The repository is encrypted if you choose repokey or keyfile. In either case the passphrase
you provide does not encrypt repository. Rather the repository is encrypted using a key that is randomly generated by
Borg. You passphrase encrypts the key. Thus, to restore your files you will need both the key and the passphrase. With
repokey your key is copied to the repository, so repokey should only be used with trusted repositories. Use keyfile
if the remote repository is not trusted. It does not copy the key to the repository, meaning that it is extremely important
for you export the key using ‘borg key export’ and keep a copy in a safe place along with the passphrase.

Once encrypted, a passphrase is needed to access the repository. There are a variety of ways to provide it. Borg
itself uses the BORG_PASSPHRASE, BORG_PASSPHRASE_FD, and BORG_COMMAND environment variables if
set. BORG_PASSPHRASE contains the passphrase, or BORG_PASSPHRASE_FD is a file descriptor that provides the
passphrase, or BORG_COMMAND contains a command that generates the passphrase. If none of those are set, Emborg
looks to its own settings. If either passphrase or passcommand are set, they are used. If neither are set, Emborg uses
avendesora_account if set. Otherwise no passphrase is available and the command fails if the repository is encrypted.

excludes

A list of files or directories to exclude from the backups. Typical value might be:

excludes = """
~/tmp
~/.local
~/.cache
~/.mozilla
~/.thunderbird
~/.config/google-chrome*
~/.config/libreoffice
~/**/__pycache__
~/**/*.pyc
~/**/.*.swp
~/**/.*.swo

"""

The value can either be specified as a list of strings or as a multi-line string with one exclude per line.

Emborg supports the same exclude patterns that Borg itself supports.

When specifying paths to excludes, the paths may be relative or absolute. When relative, they are taken to be relative
to working_dir.

10.3. Configuring 47

https://borgbackup.readthedocs.io/en/stable/usage/help.html


Emborg Documentation, Release 1.38.2

exclude_from

An alternative to excludes. You can list your excludes in one or more files, one per line, and then specify the file or
files using the exclude_from setting:

exclude_from = '{config_dir}/excludes'

The value of exclude_from may either be a multi-line string, one file per line, or a list of strings. The string or strings
would be the paths to the file or files that contain the list of files or directories to exclude. If given as relative paths,
they are relative to working_dir. These files are processed directly by Borg, which does not allow ~ to represent users’
home directories, unlike the patterns specified using patterns.

healthchecks_url

This setting specifies the URL to use for healthchecks.io. Normally it is not needed. If not specified https://.
hc-ping.com is used. You only need to specify the URL in special cases.

healthchecks_uuid

If this setting is provided, Emborg notifies healthchecks.io when the archive is being created and whether the creation
was successful. The value of the setting should be a UUID (a 32 digit hexadecimal number that contains 4 dashes). If
given, this setting should be specified on an individual configuration. For example:

healthchecks_uuid = '51cb35d8-2975-110b-67a7-11b65d432027'

include

Can be a string or a list of strings. Each string specifies a path to a file. The contents of that file are read into Emborg.
If the path is relative, it is relative to the file that includes it.

manage_diffs_cmd

Command to use to perform interactive file and directory comparisons using the --interactive option to the compare
command. The command may be specified in the form of a string or a list of strings. If a string, it may contain the literal
text {archive_path} and {local_path}, which are replaced by the two files or directories to be compared. If not,
then the paths are simply appended to the end of the command as specified. Suitable commands for use in this setting
include Vim with the DirDiff plugin, Meld, and presumably others such as DiffMerge, Kompare, Diffuse, KDiff3, etc.
If you are a Vim user, another alternative is vdiff, which provides a more streamlined interface to Vim/DirDiff. Here
are examples on how to configure Vim, Meld and VDiff :

manage_diffs_cmd = "meld"
manage_diffs_cmd = ["meld", "-a"]
manage_diffs_cmd = "gvim -f -c 'DirDiff {archive_path} {local_path}'"
manage_diffs_cmd = "vdiff -g"

The compare command mounts the remote archive, runs the specified command and then immediately unmounts the
archive. As such, it is important that the command run in the foreground. By default, gvim runs in the background.
You can tell this because if run directly in a shell, the shell immediately accepts new commands even though gvim is
still active. To avoid this, the -f option is added to the gvim command line to indicate it should run in the foreground.
Without this, you will see an error from fusermount indicating ‘Device or resource busy’. If you get this message, you
will have to close the editor and manually un-mount the archive.

48 Chapter 10. Contents

https://healthchecks.io
https://healthchecks.io
https://www.vim.org
https://www.vim.org/scripts/script.php?script_id=102
https://meldmerge.org
https://github.com/KenKundert/vdiff


Emborg Documentation, Release 1.38.2

manifest_default_format

A string that specifies the name of the default format. The name must be a key in manifest_formats. If not specified,
short is used.

manifest_formats

A dictionary that defines how the output of the manifest command is to be formatted. The default value for mani-
fest_formats is:

manifest_formats = dict(
name = "{path}",
short = "{path}{Type}",
date = "{mtime} {path}{Type}",
size = "{size:8} {path}{Type}",
si = "{Size:6.2} {path}{Type}",
owner = "{user:8} {path}{Type}",
group = "{group:8} {path}{Type}",
long = '{mode:10} {user:6} {group:6} {size:8} {mtime} {path}{extra}',

)
manifest_default_format = 'short'

Notice that 8 formats are defined:

name
used when --name-only is specified.

short
used by when --short is specified and when sorting by name.

date
used by default when sorting by date.

size
size in bytes (fixed format).

si
size in bytes (SI format), used by default when sorting by size.

owner
used by default when sorting by owner.

group
used by default when sorting by group.

long
used when --long is specified.

Your manifest_formats need not define all or even any of these formats. The above example shows the formats that
are predefined in Emborg. You do not need to specify them again. Anything you specify will override the predefined
versions, and you can add additional formats.

The formats may contain the fields supported by the Borg list command. In addition, Emborg provides some variants:

MTime, CTime, ATime:
The Borg mtime, ctime, and atime fields are simple strings, these variants are Arrow objects that support format-
ting options. For example:

10.3. Configuring 49

https://borgbackup.readthedocs.io/en/stable/usage/list.html#borg-list
https://arrow.readthedocs.io/en/latest/#supported-tokens


Emborg Documentation, Release 1.38.2

date = "{MTime:ddd YYYY-MM-DD HH:mm:ss} {path}{Type}",

Size, CSize, DSize, DCSize:
The Borg size, csize, dsize and dctime fields are simple integers, these variants are QuantiPhy objects that support
formatting options. For example:

size = "{Size:5.2r} {path}{Type}",
size = "{Size:7.2b} {path}{Type}",

Type:
Displays / for directories, @ for symbolic links, and | for named pipes.

QuantiPhy objects allow you to format the size using SI scale factors (K, Ki, M, Mi, etc.). Arrow objects allow you to
format the date and time in a wide variety of ways. Any use of QuantiPhy or Arrow can slow long listings considerably.

The fields support Python format strings, which allows you to specify how they are to be formatted. Anything outside
a field is copied literally.

must_exist

Specify paths to files that must exist before create command can be run. This is used to assure that relevant file systems
are mounted before making backups of their files.

May be specified as a list of strings or as a multi-line string with one path per line.

needs_ssh_agent

A Boolean. If true, Emborg will issue an error message and refuse to run if an SSH agent is not available.

notifier

A string that specifies the command used to interactively notify the user of an issue. A typical value is:

notifier = 'notify-send -u critical {prog_name} "{msg}"'

Any of the following names may be embedded in braces and included in the string. They will be replaced by their
value:

msg: The message for the user.
hostname: The host name of the system that Emborg is running on.
user_name: The user name of the person that started Emborg
prog_name: The name of the Emborg program.

The notifier is only used if the command is not running from a TTY.

Use of notifier requires that you have a notification daemon installed (ex: Dunst). The notification daemon provides
the notify-send command. If you do not have the notify-send command, do not set notifier.

The notify and notifier settings operate independently. You may specify none, one, or both. Generally, one uses just
one: notifier if you primarily use Emborg interactively and notify if used from cron or anacron.

50 Chapter 10. Contents

https://quantiphy.readthedocs.io/en/stable/user.html#string-formatting
https://docs.python.org/3/library/string.html#formatstrings
https://wiki.archlinux.org/title/Dunst


Emborg Documentation, Release 1.38.2

notify

A string that contains one or more email addresses separated with spaces. If specified, an email will be sent to each of
the addresses to notify them of any problems that occurred while running Emborg.

The email is only sent if the command is not running from a TTY.

Use of notify requires that you have a mail daemon installed (ex: PostFix configured as a null client). The mail daemon
provides the mail command. If you do not have the mail command, do not set notify.

The notify and notifier settings operate independently. You may specify none, one, or both. Generally, one uses just
one: notifier if you primarily use Emborg interactively and notify if used from cron or anacron.

passcommand

A string that specifies a command to be run by BORG to determine the pass phrase for the encryption key. The standard
out of this command is used as the pass phrase. This string is passed to Borg, which executes the command.

Here is an example of a passcommand that you can use if your GPG agent is available when Emborg is run. This works
if you are running it interactively, or in a cron script if you are using keychain to provide you access to your GPG agent:

passcommand = 'gpg -qd /home/user/.store-auth.gpg'

This is used as an alternative to passphrase when it is desirable to keep the passphrase out of your configuration file.

passphrase

A string that specifies the pass phrase for the encryption key. This string is passed to Borg. When specifying a pass
phrase you should be careful to assure that the configuration file that contains is only readable by the user and nobody
else.

prune_after_create

A Boolean. If true the prune command is run after creating an archive.

report_diffs_cmd

Command used to perform file and directory comparisons using the compare command. The command may be spec-
ified in the form of a string or a list of strings. If a string, it may contain the literal text {archive_path} and
{local_path}, which are replaced by the two files or directories to be compared. If not, then the paths are sim-
ply appended to the end of the command as specified. Suitable commands for use in this setting include diff -r the
and colordiff -r. Here are examples of two different but equivalent ways of configuring diff :

report_diffs_cmd = "diff -r"
report_diffs_cmd = "diff -r {archive_path} {local_path}"

You may prefer to use colordiff, which is like diff but in color:

report_diffs_cmd = "colordiff -r"

10.3. Configuring 51

http://www.postfix.org
https://www.funtoo.org/Keychain


Emborg Documentation, Release 1.38.2

repository

The destination for the backups. A typical value might be:

repository = 'archives:/mnt/backups/{host_name}-{user_name}-{config_name}'

where in this example ‘archives’ is the hostname and /mnt/backups is the absolute path to the directory that is to contain
your Borg repositories, and {host_name}-{user_name}-{config_name} is the directory to contain this repository. For
a local repository you would use something like this:

repository = '/mnt/backups/{host_name}-{user_name}-{config_name}'

These examples assume that /mnt/backups contains many independent repositories, and that each repository contains
the files associated with a single backup configuration. Borg allows you to make a repository the target of more than
one backup configuration, and in this way you can further benefit from its ability to de-duplicate files. In this case you
might want to use a less granular name for your repository. For example, a particular user could use a single repository
for all their configurations on all their hosts using:

repository = '/mnt/backups/{user_name}'

When more than one configuration shares a repository you should specify the glob_archives setting so that each con-
figuration can recognize its own archives.

A local repository should be specified with an absolute path, and that path should not contain a colon (:) to avoid
confusing the algorithm that determines whether the repository is local or remote.

run_after_backup, run_after_last_backup

Specifies commands that are to be run after the create command successfully completes. These commands often
recreate useful files that were deleted by the run_before_backup commands.

May be specified as a list of strings or as a multi-line string with one command per line (lines that begin with # are
ignored). If given as a string, a shell is used to run the command or commands. If given as a list of strings, a shell is
not used, meaning that shell path and variable expansions, redirections and pipelines are not available.

The commands specified in run_after_backup are run each time an archive is created whereas commands specified
in run_after_last_backup are run only if the configuration is run individually or if it is the last run in a composite
configuration. For example, imagine a composite configuration home that consists of two children, local and remote,
and imagine that both are configured to run the command restore after they are run. If run_after_backup is used to
specify restore, then running emborg -c home create results in restore being run twice, after both the local and
remote archives are created. However, if run_after_last_backup is used, restore is only run once, after the remote
archive is created. Generally, one specifies identical commands to run_after_last_backup for each configuration in a
composite configuration with the intent that the commands will be run only once regardless whether the configurations
are run individually or as a group.

For example, the following runs Borg-Space after each back-up to record the size history of your repository:

run_after_backup = [
'borg-space -r -m "Repository is now {{size:.2}}." {config_name}'

]

52 Chapter 10. Contents



Emborg Documentation, Release 1.38.2

run_before_backup, run_before_first_backup

Specifies commands that are to be run before the create command starts the backup. These commands often delete
large files that can be easily recreated from those files that are backed up.

May be specified as a list of strings or as a multi-line string with one command per line (lines that begin with # are
ignored). If given as a string, a shell is used to run the command or commands. If given as a list of strings, a shell is
not used, meaning that shell path and variable expansions, redirections and pipelines are not available.

The commands specified in run_before_backup are run each time an archive is created whereas commands specified
in run_before_first_backup are run only if the configuration is run individually or if it is the first run in a composite
configuration. For example, imagine a composite configuration home that consists of two children, local and remote,
and imagine that both are configured to run the command clean before they are run. If run_before_backup is used
to specify clean, then running emborg -c home create results in clean being run twice, before both the local and
remote archives are created. However, if run_before_first_backup is used, clean is only run once, before the local
archive is created. Generally, one specifies identical commands to run_before_first_backup for each configuration in a
composite configuration with the intent that the commands will be run only once regardless whether the configurations
are run individually or as a group.

run_before_borg, run_after_borg

Specifies commands that are to be run before the first Borg command is run or after the last one is run. These can be
used, for example, to mount and then unmount a remote repository, if such a thing is needed.

May be specified as a list of strings or as a multi-line string with one command per line (lines that begin with # are
ignored). If given as a string, a shell is used to run the command or commands. If given as a list of strings, a shell is
not used, meaning that shell path and variable expansions, redirections and pipelines are not available.

show_progress

Show progress when running Borg’s create command. You also get this by adding the --progress command line
option to the create command, but if this option is set True then this command will always show the progress.

show_stats

Show statistics when running Borg’s create, delete and prune commands. You can always get this by adding the
--stats command line option to the appropriate commands, but if this option is set True then these commands will
always show the statistics. If the statistics are not requested, they will be recorded in the log file rather than being
displayed.

Statistics are incompatible with the –dry-run option and will be suppressed on trial runs.

src_dirs

A list of strings, each of which specifies a directory to be backed up. May be specified as a list of strings or as a
multi-line string with one source directory per line.

When specifying the paths to the source directories, the paths may be relative or absolute. When relative, they are taken
to be relative to working_dir.

10.3. Configuring 53



Emborg Documentation, Release 1.38.2

ssh_command

A string that contains the command to be used for SSH. The default is "ssh". This can be used to specify SSH options.

verbose

A Boolean. If true Borg is run in verbose mode and the output from Borg is output by Emborg.

10.3.10 Borg Settings

These settings control the behavior of Borg. Detailed descriptions can be found in the Borg documentation.

append_only

Create an append-only mode repository.

chunker_params

Parameters used by the chunker command. More information is available from chunker_params Borg documentation.

compression

The name of the desired compression algorithm.

exclude_caches

Exclude directories that contain a CACHEDIR.TAG file.

exclude_if_present

Exclude directories that are tagged by containing a filesystem object with the given NAME

exclude_nodump

Exclude files flagged NODUMP.

glob_archives

A glob string that a backup configuration uses to recognize its archives when more than one configuration is sharing
the same repository. A glob string is a string that is expected to match the name of the archives. It must contain at least
one asterisk (*). Each asterisk will match any number of contiguous characters. For example, a glob_archives setting
of home-* will match home-2022-10-23T19:11:04.

glob_archives is required if you save the archives of multiple backup configurations to the same repository. Otherwise
it is not needed. It is used by the Check, Delete, Info, List, Mount, and Prune commands to filter out archives not
associated with the desired backup configuration.

54 Chapter 10. Contents

https://borgbackup.readthedocs.io/en/stable/usage/general.html
https://borgbackup.readthedocs.io/en/stable/usage/notes.html#chunker-params


Emborg Documentation, Release 1.38.2

lock_wait

Wait at most SECONDS for acquiring a repository/cache lock (default: 1)

keep_within

Keep all archives within this time interval.

keep_last

Number of the most recent archives to keep.

keep_minutely

Number of minutely archives to keep.

keep_hourly

Number of hourly archives to keep.

keep_daily

Number of daily archives to keep.

keep_weekly

Number of weekly archives to keep.

keep_monthly

Number of monthly archives to keep.

keep_yearly

Number of yearly archives to keep.

one_file_system

Stay in the same file system and do not store mount points of other file systems.

10.3. Configuring 55



Emborg Documentation, Release 1.38.2

patterns

A list of files or directories to exclude from the backups. Typical value might be:

patterns = """
R /
- /home/*/.cache
- /home/*/Downloads

# include susan's home
+ /home/susan

# don't backup the other home directories
- /home/*

"""

The value can either be specified as a list of strings or as a multi-line string with one pattern per line.

Patterns are a new experimental feature of Borg. They allow you to specify what to back up and what not to in a manner
that is more flexible than src_dirs and excludes allows, and can fully replace them.

For example, notice that /home/susan is included while excluding the directory that contains it (/home).

Emborg supports the same patterns that Borg itself supports.

When specifying paths in patterns, the paths may be relative or absolute. When relative, they are taken to be relative
to working_dir.

patterns_from

An alternative to patterns. You can list your patterns in one or more files, one per line, and then specify the file or files
using the exclude_from setting.

patterns_from = '{config_dir}/patterns'

The value of patterns_from may either be a multi-line string, one file per line, or a list of strings. The string or strings
would be the paths to the file or files that contain the patterns. If given as relative paths, they are relative to working_dir.
These files are processed directly by Borg, which does not allow ~ to represent users’ home directories, unlike the
patterns specified using patterns.

prefix

Only consider archive names starting with this prefix.

As of Borg 1.2 prefix is deprecated and should no longer be used. Use glob_archives instead. It provides the same
basic functionality in a way that is a little more general. For more information, see archive.

Prior to the deprecation of prefix it was common in Emborg settings file to just specify prefix and not specify archive
with the understanding that the default value of archive is {prefix}-{{now}}. So you might have something like:

prefix = '{config_name}-'

in your settings file. This can be converted to:

archive = '{config_name}-{{now}}'
glob_archives = '{config_name}-*'

56 Chapter 10. Contents

https://borgbackup.readthedocs.io/en/stable/usage/help.html


Emborg Documentation, Release 1.38.2

without changing the intent.

remote_path

Name of Borg executable on remote platform.

sparse

Detect sparse holes in input (supported only by fixed chunker).

Requires Borg version 1.2 or newer.

threshold

Sets minimum threshold for saved space when compacting a repository with the compact command. Value is given in
percent.

Requires Borg version 1.2 or newer.

remote_ratelimit

Set remote network upload rate limit in KiB/s (default: 0=unlimited).

Borg has deprecated remote_ratelimit in version 1.2. If you are seeing this warning, you should rename remote_ratelimit
to upload_ratelimit in your Emborg settings file.

umask

Set umask. This is passed to Borg. It uses it when creating files, either local or remote. The default is 0o077.

upload_buffer

Set network upload buffer size in MiB. By default no buffer is used. Requires Borg version 1.2 or newer.

upload_ratelimit

Set upload rate limit in KiB/s when writing to a remote network (default: 0=unlimited).

Use upload_ratelimit when using Borg version 1.2 or higher, otherwise use remote_ratelimit.

working_dir

All relative paths specified in the configuration files (other than those specified to include) are relative to working_dir.

Emborg changes to the working directory before running the Borg create command, meaning that relative paths speci-
fied as roots, excludes, or patterns (src_dirs, excludes, patterns, exclude_from or patterns_from) are taken to be relative
to the working directory. If you use absolute paths for your roots, excludes, and pattern, then the working directory
must be set to /.

To avoid confusion, it is recommended that all other paths in your configuration be specified using absolute paths (ex:
default_mount_point, must_exist, patterns_from, and exclude_from).

10.3. Configuring 57



Emborg Documentation, Release 1.38.2

If specified, working_dir must be specified using an absolute path. If not specified, working_dir defaults to /.

10.4 Monitoring

10.4.1 Due and Info

The due and info commands allow you to interactively check on the current status of your backups. Besides the create
command, it is good hygiene to run the prune, compact and check on a regular basis. Either the due or info command
can be used to determine when each were last run.

10.4.2 Overdue

Checking for Overdue Backups from the Server

Emborg contains an additional executable, emborg-overdue, that can be run on the destination server to determine
whether the backups have been performed recently. It reads its own settings file in ~/.config/emborg/overdue.conf that
is also a Python file and may contain the following settings:

default_maintainer (email address -- mail is sent to this person upon failure)
default_max_age (hours)
dumper (email address -- mail is sent from this person)
root (default directory for repositories)
repositories (string or array of dictionaries)

Here is an example config file:

default_maintainer = 'root@continuum.com'
dumper = 'dumper@continuum.com'
default_max_age = 12 # hours
root = '/mnt/borg-backups/repositories'
repositories = [

dict(host='mercury (/)', path='mercury-root-root'),
dict(host='venus (/)', path='venus-root-root'),
dict(host='earth (/)', path='earth-root-root'),
dict(host='mars (/)', path='mars-root-root'),
dict(host='jupiter (/)', path='jupiter-root-root'),
dict(host='saturn (/)', path='saturn-root-root'),
dict(host='uranus (/)', path='uranus-root-root'),
dict(host='neptune (/)', path='neptune-root-root'),
dict(host='pluto (/)', path='pluto-root-root'),

]

The dictionaries in repositories can contain the following fields: host, path, maintainer, max_age. host is an arbitrary
string that is used as description of the repository. It is included in the email that is sent when problems occur to identify
the backup and so should be unique. It is a good idea for it to contain both the host name and the source directory being
backed up. path is either the archive name or a full absolute path to the archive. If path is an absolute path, it is used,
otherwise it is added to the end of root. maintainer is an email address, an email is sent to this address if there is an
issue. max_age is the number of hours that may pass before an archive is considered overdue.

repositories can also be specified as multi-line string:

58 Chapter 10. Contents



Emborg Documentation, Release 1.38.2

repositories = """
# HOST | NAME or PATH | MAINTAINER | MAXIMUM AGE (hours)
mercury (/) | mercury-root-root | |
venus (/) | venus-root-root | |
earth (/) | earth-root-root | |
mars (/) | mars-root-root | |
jupiter (/) | jupiter-root-root | |
saturn (/) | saturn-root-root | |
uranus (/) | uranus-root-root | |
neptune (/) | neptune-root-root | |
pluto (/) | pluto-root-root | |

"""

If repositories is a string, it is first split on newlines, anything beyond a # is considered a comment and is ignored, and
the finally the lines are split on ‘|’ and the 4 values are expected to be given in order. If the maintainer is not given, the
default_maintainer is used. If max_age is not given, the default_max_age is used.

To run the program interactively, just make sure emborg-overdue has been installed and is on your path. Then type:

$ emborg-overdue

It is also common to run emborg-overdue on a fixed schedule from cron. To do so, run:

$ crontab -e

and add something like the following:

34 5 * * * ~/.local/bin/emborg-overdue --mail > ~/.local/share/emborg/emborg-overdue.out␣
→˓2>&

or:

34 5 * * * ~/.local/bin/emborg-overdue --quiet --mail

to your crontab.

The first example runs emborg-overdue at 5:34 AM every day while saving the output into a file. The use of the --mail
option causes emborg-overdue to send mail to the maintainer when backups are found to be overdue.

Note: By default Linux machines are not configured to send email. If you are using the --mail option to emborg-
overdue be sure that to check that it is working. You can do so by sending mail to your self using the mail command.
If you do not receive your test message you will need to set up email forwarding on your machine. You can do so by
installing and configuring PostFix as a null client.

The second example is similar except the output is suppressed rather than being saved to a file.

Alternately you can run emborg-overdue from cron.daily (described in the root example).

10.4. Monitoring 59

http://www.postfix.org/STANDARD_CONFIGURATION_README.html#null_client


Emborg Documentation, Release 1.38.2

Checking for Overdue Backups from the Client

emborg-overdue can also be configured to run on the client. This can be used when you do not control the server and
so cannot run emborg-overdue there. The configuration is identical, except you give the path to the latest.nt file. For
example:

default_maintainer = 'me@continuum.com'
dumper = 'me@continuum.com'
default_max_age = 12 # hours
root = '~/.local/share/emborg'
repositories = [

dict(host='earth (cache)', path='cache.latest.nt', max_age=0.2),
dict(host='earth (home)', path='home.latest.nt'),

]

Again, emborg-overdue is generally run from cron.

10.4.3 Monitoring Services

Various monitoring services are available on the web. You can configure Emborg to notify them when back-up jobs have
started and finished. These services allow you to monitor many of your routine tasks and assure they have completed
recently and successfully.

There are many such services available and they are not difficult to add. If the service you prefer is not currently
available, feel free to request it on Github or add it yourself and issue a pull request.

CronHub.io

When you sign up with cronhub.io and configure the health check for your Emborg configuration, you will be given
a UUID (a 32 digit hexadecimal number partitioned into 5 parts by dashes). Add that to the following setting in your
configuration file:

cronhub_uuid = '51cb35d8-2975-110b-67a7-11b65d432027'

If given, this setting should be specified on an individual configuration. It causes a report to be sent to CronHub each
time an archive is created. A successful report is given if Borg returns with an exit status of 0 or 1, which implies that
the command completed as expected, though there might have been issues with individual files or directories. If Borg
returns with an exit status of 2 or greater, a failure is reported.

HealthChecks.io

When you sign up with healthchecks.io and configure the health check for your Emborg configuration, you will be
given a UUID (a 32 digit hexadecimal number partitioned into 5 parts by dashes). Add that to the following setting in
your configuration file:

healthchecks_uuid = '51cb35d8-2975-110b-67a7-11b65d432027'

If given, this setting should be specified on an individual configuration. It causes a report to be sent to HealthChecks
each time an archive is created. A successful report is given if Borg returns with an exit status of 0 or 1, which implies
that the command completed as expected, though there might have been issues with individual files or directories. If
Borg returns with an exit status of 2 or greater, a failure is reported.

60 Chapter 10. Contents

https://github.com/KenKundert/emborg/issues
https://cronhub.io
https://healthchecks.io


Emborg Documentation, Release 1.38.2

10.5 Accessories

10.5.1 Borg-Space

Borg-Space is a utility that reports and tracks the space required by your Borg repositories. It also allows you to graph
the space used over time.

The following is an example of a graph generated by borg-space that allowed me to catch a problem that resulted in
excessive growth in in the space required to hold my repository: in the switch from Borg 1.1 to Borg 1.2, I had neglected
to implement a compaction strategy. The problem was resolved on April 5th.

10.5.2 Logging with ntLog

ntLog is a log file aggregation utility.

When run Emborg writes over a previously generated logfile. This becomes problematic if you have one cron script that
runs create frequently and another that runs a command like prune less frequently. If there is trouble with the prune
command it will be difficult to see and resolve because its logfile will be overwritten by subsequent create commands.

ntlog can be run after each Emborg run to aggregate the individual logfile from each run into a single accumulating log
file. To arrange this you can use run_after_borg:

run_after_borg = 'ntlog --keep-for 7d ~/.local/share/emborg/{config_name}.log'

This accumulates the log files as they are created to ~/.local/share/emborg/{config_name}.log.nt.

If your text editor is configured to use fold markers, you can configure ntlog to add headers to the composite logfile
that contain fold markers. In doing so you can collapse large log entries into a single line folds until they are needed, at
which point you can easily open the fold and examine the contents of the log file. Here is an example that adds headers
with Vim fold markers to the composite log file:

run_after_borg = [
[

'ntlog',
'--keep-for', '1w',
'--day', 'D MMMM YYYY {{{{{{1',
'--entry', 'h:mm A {{{{{{2',
'--description', '{cmd_name}',
'--fold-marker', '{{{{{{ ',
'/home/me/.local/share/emborg/{config_name}.log',

],
]

If you use Vim, you can figure it to fold the composite log file with :set foldmethod=marker. You can then open a
fold using zo and close it with zc.

10.5. Accessories 61

https://github.com/KenKundert/borg-space
https://github.com/KenKundert/ntlog


Emborg Documentation, Release 1.38.2

10.6 Examples

When first run, Emborg creates the settings directory and populates it with two configurations that you can use as
starting points. Those two configurations make up our first two examples.

10.6.1 Root

The root configuration is a suitable starting point for someone that wants to backup an entire machine, including both
system and user files. In order to have permission to access the files, one must run this configuration as the root user.

This configuration was constructed assuming that the backups would be run automatically at a fixed time using cron.
Since this user only has one configuration, it is largely arbitrary which file each setting resides in, however both files
must exist, and the settings file must contain configurations and default_configuration.

Here is the contents of the settings file: /root/.config/emborg/settings:

configurations = 'root'
default_configuration = 'root'

# basic settings
notify = "root@continuum.com"
upload_ratelimit = 2000 # bandwidth limit in kbps
prune_after_create = True
check_after_create = 'latest'

# repository settings
repository = 'backups:/mnt/backups/{host_name}-{user_name}-{config_name}'
archive = '{prefix}{{now:%Y%m%d}}'
prefix = '{config_name}-'
compression = 'lz4'

# shared filter settings
exclude_if_present = '.nobackup'
exclude_caches = True

# prune settings
keep_within = '1d' # keep all archives created within this interval
keep_hourly = 48 # number of hourly archives to keep
keep_daily = 14 # number of daily archives to keep
keep_weekly = 8 # number of weekly archives to keep
keep_monthly = 24 # number of monthly archives to keep
keep_yearly = 24 # number of yearly archives to keep

In this case we are assuming that backups (used in repository) is an entry in your SSH config file that points to the server
that stores your repository. To be able to run this configuration autonomously from cron, backups must be configured
to use a private key that does not have a passphrase.

And here is the contents of the root configuration file: /root/.config/emborg/root:

# Settings for root configuration
passphrase = 'carvery overhang vignette platitude pantheon sissy toddler truckle'
encryption = 'repokey'
one_file_system = False

(continues on next page)

62 Chapter 10. Contents



Emborg Documentation, Release 1.38.2

(continued from previous page)

src_dirs = '/'
excludes = '''

/dev
/home/*/.cache
/mnt
/proc
/run
/sys
/tmp
/var/cache
/var/lock
/var/run
/var/tmp

''' # list of files or directories to skip

This file contains the passphrase, and so you should be careful to set its permissions so that nobody but root can see
its contents. Also, this configuration uses repokey as the encryption method, which is suitable when you control the
server that holds the repository and you know it to be secure.

Once this configuration is complete and has been tested, you would want to add a crontab entry so that it runs on a
routine schedule. On servers that are always running, you could use crontab -e and add an entry like this:

30 03 * * * emborg --mute --config root create

For individual workstations or laptops that are likely to be turned off at night, one would instead create an executable
script in /etc/cron.daily that contains the following:

#/bin/sh
# Run root backups

emborg --mute --config root create

Assume that this file is named emborg. Then after creating it, you would make it executable with:

$ chmod a+x /etc/cron.daily/emborg

Scripts in /etc/cron.daily are one once a day, either at a fixed time generally early in the morning or, if not powered up
at that time, shortly after being powered up.

10.6.2 User

The home configuration is a suitable starting point for someone that just wants to backup their home directory on
their laptop. In this example, two configurations are created, one to be run manually that copies all files to a remote
repository, and a second that runs every few minutes and creates snapshots of key working directories. This second
allows you to quickly recover from mistakes you make during the day without having to go back to yesterday’s copy of
a file as a starting point.

Here is the contents of the shared settings file: ~/.config/emborg/settings.

# configurations
configurations = 'home snapshots'
default_configuration = 'home'

(continues on next page)

10.6. Examples 63



Emborg Documentation, Release 1.38.2

(continued from previous page)

# basic settings
notifier = 'notify-send -u normal {prog_name} "{msg}"'

# repository settings
compression = 'lz4'

# shared filter settings
exclude_if_present = '.nobackup'
exclude_caches = True

Home

Here is the contents of the home configuration file: ~/.config/emborg/home. This configuration backs up to a remote
untrusted repository and is expected to be run interactively, perhaps once per day.

repository = 'backups:/mnt/borg-backups/repositories/{host_name}-{user_name}-{config_
→˓name}'
prefix = '{config_name}-'
encryption = 'keyfile'
avendesora_account = 'laptop-borg'
needs_ssh_agent = True
upload_ratelimit = 2000
prune_after_create = True
check_after_create = 'latest'

src_dirs = '~' # paths to be backed up
excludes = '''

~/.cache
**/.hg
**/.git
**/__pycache__
**/*.pyc
**/.*.swp
**/.*.swo
**/*~

'''

run_before_backup = '(cd ~/src; ./clean)'

# prune settings
keep_within = '1d' # keep all archives created within this␣
→˓interval
keep_hourly = 48 # number of hourly archives to keep
keep_daily = 14 # number of daily archives to keep
keep_weekly = 8 # number of weekly archives to keep
keep_monthly = 24 # number of monthly archives to keep
keep_yearly = 24 # number of yearly archives to keep

In this case we are assuming that backups (used in repository) is an entry in your SSH config file that points to the
server that stores your repository. backups should be configured to use a private key and that key should be preloaded
into your SSH agent.

64 Chapter 10. Contents



Emborg Documentation, Release 1.38.2

This passphrase for this configuration is kept in Avendesora, and the encryption method is keyfile. As such, it is critical
that you extract the keyfile from Borg and copy it and your Avendesora files to a safe place so that both the keyfile and
passphrase are available if you lose your disk. You can use SpareKeys to do this for you. Otherwise extract the keyfile
using:

$ emborg borg key export @repo key.borg

cron is not used for this configuration because the machine, being a laptop, is not guaranteed to be on at any particular
time of the day. So instead, you would simply run Emborg on your own at a convenient time using:

$ emborg

You can use the Emborg due command to remind you if a backup is overdue. You can wire it into status bar programs,
such as i3status to give you a visual reminder, or you can configure cron to check every hour and notify you if they are
overdue. This one triggers a notification:

0 * * * * emborg --mute due --days 1 || notify-send 'Backups are overdue'

And this one sends an email:

0 * * * * emborg --mute due --days 1 --mail me@mydomain.com

Alternately, you can use emborg-overdue.

Snap Shots

And finally, here is the contents of the snapshots configuration file: ~/.config/emborg/snapshots.

repository = '~/.cache/snapshots'
encryption = 'none'

src_dirs = '~'
excludes = '''

~/.cache
~/media
**/.hg
**/.git
**/__pycache__
**/*.pyc
**/.*.swp
**/.*.swo
**/.~

'''

# prune settings
keep_hourly = 12
prune_after_create = True
check_after_create = False

To run this configuration every 10 minutes, add the following entry to your crontab file using ‘crontab -e’:

0,10,20,30,40,50 * * * * emborg --mute --config snapshots create

10.6. Examples 65

https://avendesora.readthedocs.io
https://github.com/kalekundert/sparekeys


Emborg Documentation, Release 1.38.2

10.6.3 Rsync.net

Rsync.net is a commercial option for off-site storage. In fact, they give you a discount if you use Borg Backup.

Once you sign up for Rsync.net you can access your storage using sftp, scp, rsync or borg of course. ssh access is also
available, but only for a limited set of commands.

You would configure Emborg for Rsync.net in much the same way you would for any remote server. Of course, you
should use some form of keyfile based encryption to keep your files secure. The only thing to be aware of is that by
default they provide a old version of borg. To use a newer version, set the remote_path to borg1.

repository = '78548@ch-s012.rsync.net:repo'
encryption = 'keyfile'
remote_path = 'borg1'

...

In this example, 78548 is the user name and ch-s012.rsync.net is the server they assign to you. repo is the name
of the directory that is to contain your Borg repository. You are free to name it whatever you like and you can have as
many as you like, with the understanding that you are constrained in the total amount of storage you consume.

10.6.4 BorgBase

BorgBase is another commercial alternative for Borg Backups. It allows full Borg access, append-only Borg access,
and rsync access, though each form of access requires its own unique SSH key.

Again, you should use some form of keyfile encryption to keep your files secure, and BorgBase recommends Blake2
encryption as being the fastest alternative.

repository = 'zMNZCv4B@zMNZCv4B.repo.borgbase.com:repo'
encryption = 'keyfile-blake2'

...

In this example, zMNZCv4B is the user name and zMNZCv4B.repo.borgbase.com is the server they assign to you.
You may request any number of repositories, with each repository getting its own username and hostname. repo is the
name of the directory that is to contain your Borg repository and cannot be changed.

10.7 Python API

Emborg has a simple API that allows you to run borg commands. Here is an example taken from sparekeys that exports
the keys from your Borg repository so then can be backed up separately:

from emborg import Emborg
from pathlib import Path

destination = Path('keys')

with Emborg('home') as emborg:
borg = emborg.run_borg(

cmd = 'key export',
args = [emborg.destination(), destination / '.config/borg.repokey']

)
(continues on next page)

66 Chapter 10. Contents

https://www.rsync.net/products/attic.html
https://www.borgbase.com
https://github.com/kalekundert/sparekeys


Emborg Documentation, Release 1.38.2

(continued from previous page)

if borg.stdout:
print(borg.stdout.rstrip())

Emborg takes the config name as an argument, if not given the default config is used. You can also pass list of Emborg
options and the path to the configurations directory.

Emborg provides the following useful methods and attributes:

configs

The list of configs associated with the requested config. If a scalar config was requested, the list be a list with a single
member, the requested config. If the requested config is a composite config, the list consists of all the member configs
of the requested config.

repository

The path to the repository.

version

The Emborg version number as a 3-tuple (major, minor, patch).

destination(archive)

Returns the full path to the archive. If Archive is False or None, then the path to the repository it returned. If Archive
is True, then the default archive name as taken from settings file is used. This is only appropriate when creating new
repositories.

run_borg(cmd, args, borg_opts, emborg_opts)

Runs a Borg command.

cmd is the desired Borg command (ex: ‘create’, ‘prune’, etc.).

args contains the command line arguments (such as the repository or archive). It may also contain any additional
command line options not automatically provided. It may be a list or a string. If it is a string, it is split at white space.

borg_opts are the command line options needed by Borg. If not given, it is created for you by Emborg based upon your
configuration settings.

Finally, emborg_opts is a list that may contain any of the following options: ‘verbose’, ‘narrate’, ‘dry-run’, or ‘no-log’.

This function runs the Borg command and returns a process object that allows you access to stdout via the stdout
attribute.

run_borg_raw(args)

Runs a raw Borg command without interpretation except for replacing a @repo argument with the path to the repository.

args contains all command line options and arguments except the path to the executable.

borg_options(cmd, emborg_opts)

This function returns the default Borg command line options, those that would be used in run_borg if borg_opts is not
set. It can be used when constructing a custom borg_opts.

value(name, default=”)

Returns the value of a scalar setting from an Emborg configuration. If not set, default is returned.

values(name, default=())

Returns the value of a list setting from an Emborg configuration. If not set, default is returned.

Of these entry points, only configs works with composite configurations.

10.7. Python API 67



Emborg Documentation, Release 1.38.2

You can examine the emborg/command.py file for inspiration and examples on how to use the Emborg API.

10.7.1 Example

A command that queries one or more configs and prints the total size of its archives. This example is a simplified
version of the Emborg accessory available from Borg-Space.

#!/usr/bin/env python3
"""
Borg Repository Size

Reports on the current size of one or more Borg repositories managed by Emborg.

Usage:
borg-space [options] [<config>...]

Options:
-m <msg>, --message <msg> template to use when building output message

<msg> may contain {size}, which is replaced with the measured size, and
{config}, which is replaced by the config name.
If no replacements are made, size is appended to the end of the message.
"""

import arrow
from docopt import docopt
from emborg import Emborg
from quantiphy import Quantity
from inform import Error, display
import json

now = str(arrow.now())

cmdline = docopt(__doc__)
show_size = not cmdline['--quiet']
record_size = cmdline['--record']
message = cmdline['--message']

try:
requests = cmdline['<config>']
if not requests:

requests = [''] # this gets the default config

for request in requests:
# expand composite configs
with Emborg(request, emborg_opts=['no-log']) as emborg:

configs = emborg.configs

for config in configs:
with Emborg(config, emborg_opts=['no-log']) as emborg:

# get name of latest archive
borg = emborg.run_borg(

(continues on next page)

68 Chapter 10. Contents

https://github.com/KenKundert/borg-space


Emborg Documentation, Release 1.38.2

(continued from previous page)

cmd = 'list',
args = ['--json', emborg.destination()]

)
response = json.loads(borg.stdout)
try:

archive = response['archives'][-1]['archive']
except IndexError:

raise Error('no archives available.', culprit=config)

# get size info for latest archive
borg = emborg.run_borg(

cmd = 'info',
args = ['--json', emborg.destination(archive)]

)
response = json.loads(borg.stdout)
size = response['cache']['stats']['unique_csize']

# report the size
size_in_bytes = Quantity(size, 'B')
if not message:

message = '{config}: {size}'
msg = message.format(config=config, size=size_in_bytes)
if msg == message:

msg = f'{message}: {size_in_bytes}'
display(msg)

except Error as e:
e.report()

10.8 Releases

10.8.1 Latest development release

Version: 1.38.2
Released: 2024-01-01

10.8. Releases 69



Emborg Documentation, Release 1.38.2

10.8.2 1.39 (2024-??-??)

• Add date of last check to output of info command.

• Miscellaneous refinements.

10.8.3 1.38 (2023-11-04)

• Added ‘last checked date’ reporting to due command.

• Do not run check –repair and compact commands if –dry-run is requested.

• Pass output of Borg create command to hooks to allow it to be reported to healthchecks.io.

10.8.4 1.37 (2023-05-18)

• Add missing dependency.

10.8.5 1.36 (2023-05-15)

This release provides new mechanisms that allow you to monitor your pruning and compaction operations to help assure
that these activities are not neglected. Both a prune and a compact operation must be performed to release disk space
by eliminating expired archives. The combination of these to operations is referred to by Emborg as a squeeze.

• specifying an integer for --date now finds archive by index.

• due and info commands now report the latest prune and compact operations as well as the latest create operation.

Note: If you use emborg-overdue from the client you will need to change the paths you specify in overdue.conf. They
now need to end in .latest.nt rather than .lastbackup.

Note: If you use Borg-Space, you will need to upgrade to version 2.

10.8.6 1.35 (2023-03-20)

• Improved the time resolution in due command.

• Added si format to manifest command.

• Allow config_dir to be specified through API.

70 Chapter 10. Contents

https://healthchecks.io


Emborg Documentation, Release 1.38.2

10.8.7 1.34 (2022-11-03)

• Added ability to apply the info command to a particular archive.

10.8.8 1.33 (2022-10-22)

• Added compare command.

• Added manage_diffs_cmd and report_diffs_cmd settings.

• Allow ~/.config/emborg to always hold settings files if user prefers.

10.8.9 1.32 (2022-04-01)

• Fixed issues associated with compact_after_delete setting.

10.8.10 1.31 (2022-03-21)

• Enhanced Emborg to support new Borg 1.2 features.

– Added compact command

– Added compact_after_delete, chunker_params, sparse, threshold, upload_ratelimit, upload_buffer set-
tings.

• Added the run_before_borg and run_after_borg settings.

• Added the --cache-only option and the ability to delete multiple archives at one time to the delete command.

10.8.11 1.30 (2022-01-04)

• Fix some issues with relative paths.

10.8.12 1.29 (2021-12-18)

• Do not signal failure to hooks if Borg completes normally, even if there were warnings.

• Return an exit status of 1 if Emborg runs to completion but with exceptions, and 2 if it cannot complete normally
due to a error or errors.

10.8.13 1.28 (2021-11-06)

• Suppress log file generation for configs, due, help, log, settings and version commands.

• Add version to the API.

10.8. Releases 71



Emborg Documentation, Release 1.38.2

10.8.14 1.27 (2021-09-21)

• Improve the logging for composite configurations.

• Add support for Borg-Space, a utility that allows you to track and plot disk space usage for your Borg repositories
over time.

10.8.15 1.26 (2021-09-03)

• Improve the tests.

• Allow access to names of child configs through API.

10.8.16 1.25 (2021-08-28)

• Added the compare command.

• Added the manage_diffs_cmd and report_diffs_cmd settings.

• Added the run_before_first_backup and run_after_last_backup settings.

• Allow files listed by manifest command to be constrained to those contained within a path.

• Allow relative dates to be specified on the extract, manifest, mount and restore commands.

• Allow BORG_PASSPHRASE, BORG_PASSPHRASE_FD, or BORG_PASSCOMMAND to dominate over Em-
borg passphrase settings.

10.8.17 1.24 (2021-07-05)

• Added healthchecks_url and cronhub_url settings.

10.8.18 1.23 (2021-07-01)

• Fix missing dependency.

10.8.19 1.22 (2021-06-21)

• Added support for healthchecks.io monitoring service.

• Added support for cronhub.io monitoring service.

10.8.20 1.21 (2021-03-11)

• Made extensive changes to manifest command to make it more flexible

– colorized the output based on file health (green implies healthy, red implies unhealthy)

– added --no-color option to manifest to suppress colorization

– added colorscheme setting.

– added manifest_default_format setting.

– added support for Borg list command field names for both reporting and sorting.

72 Chapter 10. Contents

https://github.com/KenKundert/borg-space
https://healthchecks.io
https://cronhub.io


Emborg Documentation, Release 1.38.2

– added Emborg variants to some of the Borg field names.

– added --show-formats command line option.

– added --format command line option.

– added --sort-by-field command line option.

– change predefined formats to use fields that render faster

Warning: These changes are not backward compatible. If you have a manifest_formats setting
from a previous version, it may need to be updated.

• It is now an error for prefix setting to contain {{now}}.

• Settings command will now print a single setting value if its name is given.

10.8.21 1.20 (2021-02-13)

• Add --progress command-line option and show_progress option to the create command.

10.8.22 1.19 (2021-01-02)

• Added --list command-line option to the prune command.

10.8.23 1.18 (2020-07-19)

• Added --repo option to delete command.

• Added --relocated global command-line option.

• Emborg now automatically confirms to Borg that you know what you are doing when you delete a repository or
repair an archive.

10.8.24 1.17 (2020-04-15)

• Borg command allows archive to be added to @repo.

• Added encoding setting.

10.8.25 1.16 (2020-03-17)

• Refinements and bug fixes.

10.8. Releases 73



Emborg Documentation, Release 1.38.2

10.8.26 1.15 (2020-03-06)

• Improve messaging from emborg-overdue

• Configs command now outputs default configuration too.

• Some commands now use first subconfig when run with a composite configuration rather than terminating with
an error.

• Added show_stats setting.

• Added --stats option to create, delete and prune commands.

• Added --list option to create, extract and restore commands.

• Added sorting and formatting options to manifest command.

• Added manifest_formats setting.

• Renamed --trial-run option to --dry-run to be more consistent with Borg.

• Add files and f aliases to manifest command.

• Added working_dir setting.

• Added do_not_expand setting.

• Added exclude_nodump setting

• Added patterns and patterns_from settings.

• Emborg lock file is now ignored if the process it references is no longer running

• Support --repair option on check command.

10.8.27 1.14 (2019-12-31)

• Remove debug message accidentally left in emborg-overdue

10.8.28 1.13 (2019-12-31)

• Enhance emborg-overdue to work on clients as well as servers

10.8.29 1.12 (2019-12-25)

• Added default_mount_point setting.

• Fixed some issues with borg command.

• Added --oldest option to due command.

74 Chapter 10. Contents



Emborg Documentation, Release 1.38.2

10.8.30 1.11 (2019-11-27)

• Bug fix release.

10.8.31 1.10 (2019-11-11)

• Bug fix release.

10.8.32 1.9 (2019-11-08)

• Added ability to check individual archives to the check command.

• Made latest archive the default for check command.

• Allow exclude_from setting to be a list of file names.

10.8.33 1.8 (2019-10-12)

• Remove duplicated commands.

10.8.34 1.7 (2019-10-07)

• Fixed bug that involved the Boolean Borg settings (one_file_system, exclude_caches, . . . )

10.8.35 1.6 (2019-10-04)

• Added restore command.

• Added verbose setting.

10.8.36 1.5 (2019-09-30)

• Added composite configurations.

• Added support for multiple backup configurations in a single repository.

• Added prefix and exclude_from settings.

• Provide default value for archive setting.

• Add --all command line option to mount command.

• Add --include-external command line option to check, list, mount, and prune commands.

• Add --sort command line option to manifest command.

• Add --latest command line option to delete command.

• Added --quiet command line option

• umount command now deletes directory used as mount point.

• Moved log files to ~/.local/share/emborg (run ‘mv ~/.config/emborg/*.{log,lastbackup}* ~/.local/share/emborg’
before using this version).

10.8. Releases 75



Emborg Documentation, Release 1.38.2

10.8.37 1.4 (2019-04-24)

• Added ssh_command setting

• Added --fast option to info command

• Added emborg-overdue executable

• Allow run_before_backup and run_after_backup to be simple strings

10.8.38 1.3 (2019-01-16)

• Added the raw borg command.

10.8.39 1.2 (2019-01-16)

• Added the borg_executable and passcommand settings.

10.8.40 1.1 (2019-01-13)

• Improved and documented API.

• Creates the settings directory if it is missing and add example files.

• Added --mute command line option.

• Support multiple email addresses in notify.

• Added warning if settings file is world readable and contains a passphrase.

10.8.41 1.0 (2019-01-09)

• Added remote_path setting.

• Formal public release.

10.8.42 0.3 (2018-12-25)

• Initial public release (beta).

10.8.43 0.0 (2018-12-05)

• Initial release (alpha).

• genindex

76 Chapter 10. Contents


	What is Emborg?
	Why Emborg?
	Why Borg?
	Terminology
	Quick Tour
	Status
	Borg
	Precautions
	Issues
	Contents
	Getting Started
	Installing
	Configuring Emborg to Backup A Home Directory
	Shared Settings
	Configuration for a Remote Repository: backups
	Configuration for a Local Repository: snapshots
	Overdue Backups

	Configuring Emborg to Backup an Entire Machine

	Commands
	Exit Status
	Borg
	BreakLock
	Check
	Compact
	Compare
	Configs
	Create
	Delete
	Diff
	Due
	Extract
	Help
	Info
	Init
	List
	Log
	Manifest
	Mount
	Prune
	Restore
	Settings
	Umount
	Version

	Configuring
	Shared Settings
	Configurations
	Paths
	Includes
	Composite Configurations
	Patterns
	Archive Retention
	Confirming Your Configuration
	Emborg Settings
	archive
	avendesora_account
	avendesora_field
	borg_executable
	check_after_create
	colorscheme
	compact_after_delete
	configurations
	cronhub_url
	cronhub_uuid
	default_configuration
	default_mount_point
	do_not_expand
	encoding
	encryption
	excludes
	exclude_from
	healthchecks_url
	healthchecks_uuid
	include
	manage_diffs_cmd
	manifest_default_format
	manifest_formats
	must_exist
	needs_ssh_agent
	notifier
	notify
	passcommand
	passphrase
	prune_after_create
	report_diffs_cmd
	repository
	run_after_backup, run_after_last_backup
	run_before_backup, run_before_first_backup
	run_before_borg, run_after_borg
	show_progress
	show_stats
	src_dirs
	ssh_command
	verbose

	Borg Settings
	append_only
	chunker_params
	compression
	exclude_caches
	exclude_if_present
	exclude_nodump
	glob_archives
	lock_wait
	keep_within
	keep_last
	keep_minutely
	keep_hourly
	keep_daily
	keep_weekly
	keep_monthly
	keep_yearly
	one_file_system
	patterns
	patterns_from
	prefix
	remote_path
	sparse
	threshold
	remote_ratelimit
	umask
	upload_buffer
	upload_ratelimit
	working_dir


	Monitoring
	Due and Info
	Overdue
	Checking for Overdue Backups from the Server
	Checking for Overdue Backups from the Client

	Monitoring Services
	CronHub.io
	HealthChecks.io


	Accessories
	Borg-Space
	Logging with ntLog

	Examples
	Root
	User
	Home
	Snap Shots

	Rsync.net
	BorgBase

	Python API
	Example

	Releases
	Latest development release
	1.39 (2024-??-??)
	1.38 (2023-11-04)
	1.37 (2023-05-18)
	1.36 (2023-05-15)
	1.35 (2023-03-20)
	1.34 (2022-11-03)
	1.33 (2022-10-22)
	1.32 (2022-04-01)
	1.31 (2022-03-21)
	1.30 (2022-01-04)
	1.29 (2021-12-18)
	1.28 (2021-11-06)
	1.27 (2021-09-21)
	1.26 (2021-09-03)
	1.25 (2021-08-28)
	1.24 (2021-07-05)
	1.23 (2021-07-01)
	1.22 (2021-06-21)
	1.21 (2021-03-11)
	1.20 (2021-02-13)
	1.19 (2021-01-02)
	1.18 (2020-07-19)
	1.17 (2020-04-15)
	1.16 (2020-03-17)
	1.15 (2020-03-06)
	1.14 (2019-12-31)
	1.13 (2019-12-31)
	1.12 (2019-12-25)
	1.11 (2019-11-27)
	1.10 (2019-11-11)
	1.9 (2019-11-08)
	1.8 (2019-10-12)
	1.7 (2019-10-07)
	1.6 (2019-10-04)
	1.5 (2019-09-30)
	1.4 (2019-04-24)
	1.3 (2019-01-16)
	1.2 (2019-01-16)
	1.1 (2019-01-13)
	1.0 (2019-01-09)
	0.3 (2018-12-25)
	0.0 (2018-12-05)



